CP Asymmetries, Decay Rates, and Dalitz-Plot Analysis of B→KKK at BaBar

SUNY Stony Brook SLAC

On Behalf of the BaBar Collaboration

Les Rencontres de Physique de la Vallée d'Aoste February 29, 2012

vana, All Rights Reserved

B→KKK Decays

• Decays are dominated by $b \rightarrow s$ loop ("penguin") diagrams:

- Tree amplitudes subdominant in SM
- New Physics can appear in loops

 altering CP violation from SM expectation!

Brian Lindquist (BaBar)

CP Violation in b→s Penguins

• Time-dependent CP-violation:

 $A_{CP}(\Delta t) \sim \eta_{CP} \sin(2\beta_{eff}) \sin(\Delta m_d \Delta t)$

- Measured in many B decays!
- Also measure direct CP asymmetry A_{CP}

					PRELIMINARY
b→ccs	World Average				0.68 ± 0.02
φ K ⁰	Average		+ *	4	0.56 +0.16 -0.18
η΄ Κ ⁰	Average		++		0.59 ± 0.07
K _s K _s K _s	Average		·	★ ──1	0.72 ± 0.19
π ⁰ K ⁰	Average		+ *	-	0.57 ± 0.17
ρ ⁰	Average		⊢ ★	4	0.54 +0.18
ωK _s	Average	⊢	*		0.45 ± 0.24
f _o K _S	Average		⊢★	4	0.62 +0.11 -0.13
$f_2 K_S$	Average	H	*		0.48 ± 0.53
f _x K _s	Average -	*		4	0.20 ± 0.53
π ⁰ π ⁰ K _S	Average				-0.72 ± 0.71
$\phi \ \pi^0 \ K_S$	Average		I	*	0.97 +0.03 -0.52
π ⁺ π ⁻ K _S I	NAverage –	-	-1		0.01 ± 0.33
K ⁺ K [−] K ⁰	Average			⊢★ I	0.82 ± 0.07
-1.6 -1.4 -	1.2 -1 -0.8 -0.6 -0.4 -0.	.2 0 0.2	0.4 0.6	0.8 1	1.2 1.4 1.6

 $\sin(2\beta^{\text{eff}}) \equiv \sin(2\phi_1^{\text{eff}})_{\text{find}}$

Analysis Overview

• $B^0 \rightarrow K^+K^-K_s$:

Measure time-dependent CP asymmetry

 $A_{CP}(\Delta t) \sim \eta_{CP} \sin(2\beta_{eff}) \sin(\Delta m_d \Delta t)$

Complication -- $K^+K^-K_s$ not CP eigenstate: $\eta_{CP} \sim (-1)^L$ CP content depends on Dalitz plot/spin structure of decay

• $B^+ \rightarrow K^+ K^- K^+$ and $B^+ \rightarrow K_S K_S K^+$

Study Dalitz structure – help understand CP content in K⁺K⁻K_S $f_X(1500)$ – poorly understood resonance, seen in B \rightarrow KKK, taken to be a scalar

Large "nonresonant" contribution needs further study Search for direct CP violation

Submitted to PRD

arXiv:1201.5897

The BaBar Experiment

- PEP-II asymmetric e⁺e⁻ collider at SLAC
- 9.0 GeV e⁻ on 3.1 GeV e⁺
- Operating at Upsilon(4S) resonance

- BaBar took data from 1999-2008
- Analyses based on final dataset:
 - \sim 470M BB pairs

Data Fit Projections

Brian Lindquist (BaBar)

La Thuile 2012

6

The Dalitz Plot

From isobar coefficients can derive: partial branching fractions, A_{CP} (= -2b/(1+b²)), β_{eff} (= β + δ), etc.

Brian Lindquist (BaBar)

Dalitz Plot Projections

Brian Lindquist (BaBar)

Dalitz Model

Preliminary

data weighted by PL

- Previous analyses had f_x(1500) and exponential NR model.
- f_x(1500) and exponential NR inadequate to describe data

New Model

- $f_X(1500) \rightarrow f_0(1500) + f_2'(1525) + f_0(1710)$
- Polynomial NR model, with Swave and P-wave terms

2.5

3.5

3

Brian Lindquist (BaBar)

La Thuile 2012

1.5

4.5

 $m_{K_SK_S}$ (GeV/c²)

B⁺→K⁺K⁻K⁺ Results

• $A_{CP}(\phi K^+)$ larger than SM expectation:

 $A_{CP} = (1.6^{+3.1}_{-1.4})\%$ (QCDF) Beneke, Neubert, Nucl Phys B675, 333 $A_{CP} = (1^{+0}_{-1})\%$ (PQCD) Li, Mishima, PRD 74, 094020

Brian Lindquist (BaBar)

 A_{CP} =(12.8 ± 4.4 ± 1.3)%

Signal-weighted data in $\phi(1020)$ region ("sPlot")

Likelihood scan in $A_{CP}(\phi(1020))$

A_{CP}=0 excluded at 2.8 sigma

B⁰→K⁺K⁻K_S Results

CP-violating parameters

Component	$\beta_{\rm eff} \ ({\rm deg})$	$A_{CP}(=-C)(\%)$
$\phi(1020)K_{S}^{0}$	$21 \pm 6 \pm 2$	$-5\pm18\pm5$
$f_0(980)K_S^0$	$18 \pm 6 \pm 4$	$-28\pm24\pm9$
Other	$20.3 \pm 4.3 \pm 1.2$	$-2\pm9\pm3$

Good agreement with SM

Charmonium: $\beta = 21.4 \pm 0.8 \text{ deg}$

Brian Lindquist (BaBar)

Summary

- Indication of direct CP violation in $B^+ \rightarrow \phi K^+$ at 2.8 σ .
 - $A_{CP} = (12.8 \pm 4.4 \pm 1.3)\%$
 - − SM: (0−4.7)%
- Most precise measurement of $\beta_{eff}(\phi K_S)$:
 - $\beta_{eff} = (21 \pm 6 \pm 2)$ degrees

- $f_X(1500)$ not a single resonance well described by $f_0(1500) + f_2'(1525) + f_0(1710)$
- We await results from Belle and LHCb!

Backup

Brian Lindquist (BaBar)

Common Analysis Techniques

Suppress dominant "continuum" background: e⁺e⁻→qq (q=u,d,s,c)

- BB backgrounds: generally small, but some can look similar to signal – dangerous!
- Measurements extracted using multivariate maximum-likelihood (ML) fits

Brian Lindquist (BaBar)

B⁺→K⁺K⁻K⁺ BF's

Decay mode	$\mathcal{B}(B^+ \to K^+ K^- K^+) \times FF_j \ (10^{-6})$
$\phi(1020)K^{+}$	$4.48 \pm 0.22^{+0.33}_{-0.24}$
$f_0(980)K^+$	$9.4 \pm 1.6 \pm 2.8$
$f_0(1500)K^+$	$0.74 \pm 0.18 \pm 0.52$
$f_2'(1525)K^+$	$0.69 \pm 0.16 \pm 0.13$
$f_0(1710)K^+$	$1.12 \pm 0.25 \pm 0.50$
$\chi_{c0}K^+$	$1.12 \pm 0.15 \pm 0.06$
NR	$22.8 \pm 2.7 \pm 7.6$
NR (S-wave)	$52^{+23}_{-14} \pm 27$
NR (P-wave)	$24^{+22}_{-12} \pm 27$

$B^+ \rightarrow K_S K_S K^+ BF's$

Decay mode	$\mathcal{B}(B^+ \to K^0_S K^0_S K^+) \times FF_j \ (10^{-6})$
$f_0(980)K^+$	$14.7 \pm 2.8 \pm 1.8$
$f_0(1500)K^+$	$0.42 \pm 0.22 \pm 0.58$
$f_2'(1525)K^+$	$0.61 \pm 0.21^{+0.12}_{-0.09}$
$f_0(1710)K^+$	$0.48^{+0.40}_{-0.24} \pm 0.11$
$\chi_{c0}K^+$	$0.53 \pm 0.10 \pm 0.04$
NR (S-wave)	$19.8 \pm 3.7 \pm 2.5$

$B^0 \rightarrow K^+K^-K_S BF's$

Decay mode	$\mathcal{B}(B^0 \to K^+ K^- K^0) \times FF_j \ (10^{-6})$
$\phi(1020)K^{0}$	$3.48 \pm 0.28^{+0.21}_{-0.14}$
$f_0(980)K^0$	$7.0^{+2.6}_{-1.8} \pm 2.4$
$f_0(1500)K^0$	$0.57^{+0.25}_{-0.19} \pm 0.12$
$f_2'(1525)K^0$	$0.13^{+0.12}_{-0.08} \pm 0.16$
$f_0(1710)K^0$	$4.4 \pm 0.7 \pm 0.5$
$\chi_{c0}K^0$	$0.90 \pm 0.18 \pm 0.06$
NR	$33 \pm 5 \pm 9$
NR (S-wave)	$30 \pm 5 \pm 8$
NR (P-wave)	$3.1 \pm 0.7 \pm 0.4$