



# Heavy Ion Physics Results from CMS



Gábor Veres CERN Gabor.Veres@cern.ch



#### XXVI Rencontres de Physique de la Vallee d'Aoste, 28<sup>th</sup> Feb 2012, La Thuile, Italy



# **Heavy Ion Physics**



- Hadron deconfinement: quark-gluon 'soup'
  - First microseconds after the Big Bang
  - T > 150-180 MeV/k\_B and  $\epsilon$  > 1GeV/fm<sup>3</sup> needed
  - Experimental tool: heavy ion collisions
- First indications at the CERN SPS
  - Charmonium suppression, strangeness enhancement
- Extensive studies at BNL, RHIC
  - Operating since 2000,  $\sqrt{s_{NN}}$ =0.2 TeV
  - High  $p_T$  hadron suppression, elliptic flow, thermal photons
- At LHC, new energy frontier, new 'probes'
  - jets, Z, W, photons, Y mesons
  - The CMS experiment is well adapted to measure these



### **Compact Muon Solenoid**



CERI



## **Comprehensive list of topics**



- Multiplicity and transverse energy
  - $dN_{ch}/d\eta \approx 1600$  and  $dE_T/d\eta \approx 2 \text{ TeV}$  !
- Particle correlations
  - Elliptic flow and higher harmonics (\*high  $p_T$ )
  - Di-hadron correlations (the "ridge")

#### - Standard candles: Electroweak bosons

- Isolated photons
- $Z \rightarrow \mu \mu$  (signal for  $Z \rightarrow ee$ )
- $W \rightarrow \mu v$
- Quarkonium suppression
  - J/ψ
  - Y ground and excited states
- Jet quenching
  - High  $p_T$  particle suppression\*
  - Di-jet imbalance
  - Di-jets with momentum dependence\*
  - Fragmentation functions

28th Feb 2012



PAS HIN-10-002 & 11-005 JHEP 07 (2011) 076 arXiv: 1201.3158

arXiv: 1201.3093, acc.PLB PRL 106 (2011) 212301 New preliminary result

arXiv:1201.5069 PRL 107 (2011) 052302

arXiv:1202.2554, acc EPJC PRC 84 (2011) 024906 arXiv:1202.5022 PAS HIN-11-004



#### Total multiplicity and transverse energy





- Up to 1600 charged particles per pseudo rapidity unit
- Centrality dependence providing • inputs to (initial state) models

28th Feb 2012

- Up to 2 TeV per unit of pseudorapidity
- 3 times larger than at RHIC; • 100 times larger than nuclear densities 5



# **Elliptic flow**

Δω



- $v_2 = <\cos 2\phi > =$ 
  - = 2<sup>nd</sup> Fourier coefficient of the azimuthal distribution of particles wrt reaction plane
- Modest raise w.r. to lower energy experiments (higher <p<sub>T</sub>>)





 In the long range region (2<|Δη|<4), dihadron harmonics shown to factorize and reflect the single particle harmonics

- not for high  $p_T v_2$ , probably reflecting jet correlations

 The "ridge" in PbPb is well modeled by single particle harmonics and could just reflect collective motion (v<sub>2</sub>) and overlap region fluctuations (v<sub>n</sub>)



## New probes: isolated photons



arXiv:1201.3093

M



### New probes: Z bosons



- 39 counts over a negligible background
- No R<sub>AA</sub> here, but direct comparison to solid theory: no modifications

PRL106 (2011) 212301

.ER

### New probes: W bosons

- No centrality dependence
  - $R_{AA}(W^+) \approx 0.7$
  - $R_{AA}(W^{-}) \approx 1.3$
  - $R_{AA}(W) = 1.04 \pm 0.07 \pm 0.12$
- Due to isospin effect, we expect:
  - $R_{AA}(W^{+}) != R_{AA}(W^{-}) != 1$
- Muon charge asymmetry
  - $(W^+ W^-) / (W^+ + W^-)$
  - Also matching predictions





# Quarkonium suppression



- Old predicted signature of the QGP
  - Quarkonia should melt one after the other, depending on their binding energy
  - Recent example of melting temperatures  $\rightarrow$
- SPS/RHIC:
  - no/marginal access to the (yet unresolved) Y family
  - J/ $\psi$  and  $\psi$ ' studied in detail
- LHC:







## At the LHC, $B \rightarrow J/\psi$ is significant



CERI







 $R_{AA} = 0.20 \pm 0.03 \pm 0.01 \pm 0.01$  (central)

arXiv:1201.5069

28th Feb 2012



# $B \rightarrow J/\psi$ suppression



- First measurement in heavy-ion collisions
- J/ψ coming from B decay are strongly suppressed
- b-quark energy loss / quenching ?



 $R_{AA} = 0.38 \pm 0.07 \pm 0.02 \pm 0.03$  (min. bias)







$$\frac{\Upsilon(2S+3S)/\Upsilon(1S)|_{PbPb}}{\Upsilon(2S+3S)/\Upsilon(1S)|_{pp}} = 0.31_{-0.15}^{+0.19} \pm 0.03$$
PRL 107 (2011) 052302





# **Di-jet imbalance**



- The leading jet of  $E_T^1 > 120$  GeV (trigger efficiency) and the
- sub-leading jet  $E_T^2 > 50$  GeV (above background)

stay essentially back-to back ( $\Delta \phi = \pi$ ) but...





# **Di-jet imbalance**



- The leading jet of  $E_T^1 > 120$  GeV (trigger efficiency) and the
- sub-leading jet E<sub>T</sub><sup>2</sup> > 50 GeV (above background)

stay essentially back-to back ( $\Delta \phi = \pi$ ) but...

• highly unbalanced  $(E_T^1 > E_T^2)$  in central collisions:





28th Feb 2012





PRC84 (2011) 024906



### **Fragmentation functions**



 Surviving jets are essentially unmodified, even the subleading (quenched) one
 PAS HIN-11-004

28th Feb 2012



### $p_{T}$ -dependence of jet quenching



CER



- v<sub>2</sub> measurement extended up to 60 GeV/c
  - Full 2011 statistics, high-p<sub>T</sub> track trigger
- Anisotropy driven by the jet energy loss
  - Gradual decrease, at high  $p_T$  compatible with zero in mid-central collisions



## Conclusions



24

- Photons, Z and W are unmodified by the created medium
- First steps toward γ-jet and Z-jet measurements
  - Photons and Z acting as in-situ calibrators of opposite jet...
  - First time accessible in heavy-ion collisions
- J/ $\psi$ , Y excited states and high  $p_T$  charged particles are suppressed
- $B \rightarrow J/\psi$ 
  - Decays outside the medium, reflects the fate of the b quark
  - B-mesons are also suppressed
  - b-quark energy loss?
- Large imbalance of di-jet energies
  - But, angular correlation is conserved
- Energy imbalance compensated by low  $p_T$  particles over a large angle
- Jet fragmentation independent of energy loss

10 submitted papers on PbPb collisions

28th Feb 2012 ~20x more data from 2011 already producing results