The Search For The Higgs Boson
In The Complete Run II Dataset With CDF

Homer Wolfe
The Ohio State University
On Behalf of the CDF Collaboration

Les Rencontres de Physique de la Vallée d'Aoste
2 March 2012 La Thuile, Italy
Goal: Direct Evidence for the SM Higgs Boson

Motivation

2011 Search Status

The Tevatron, CDF

SM Higgs Production & Decay at the Tevatron

Recent Advancements in Search Techniques

Prospects for Full Dataset Results

The Future
Theoretical Motivation

- Gauge invariance suggests massless W and Z bosons
 - W, Z observed to be massive
- In SM, W&Z observable mass via electroweak symmetry breaking
- Ground breaking work on EWSB:
- Proposed mechanism of EWSB predicts an additional observable scalar particle.
Experimental Status

- Resulting boson mass is unpredicted by theory
 - Mass determines production and decay rates (next slide)

- Indirect constraints (MW, Mtop) prefer a “light” SM Higgs Boson
 - New CDF 2012 W mass! (B. Jayatilaka, La Thuile)

- Direct Searches: Exclusions of MH:
 - LEP < 114 GeV
 - arXiv:0602042v1
 - Tevatron [156,177] GeV
 - arXiv:1107.5518
 - LHC [~127, 600] GeV
 - arXiv:1202.1408 (ATLAS)
 - arXiv:1202.1488 (CMS)
Tevatron: Powerful in H→bb

- **Expected Sensitivities**
 (January 2012, 125 GeV):
 - H→bb:
 - ATLAS, CMS: ~4.3xSM
 - CDF, D0: ~2xSM
 - H→γγ:
 - ATLAS, CMS: ~1.5-2xSM
 - CDF, D0: ~10-13xSM
 - H→WW:
 - ATLAS, CMS: ~1-2xSM
 - CDF, D0: ~3.5xSM

- **Tevatron's strength in the light-SM-Higgs scenario is the branching fraction of H to bb!**

ARXIV:1202.4195
The Tevatron, Batavia IL, USA

- Superconducting storage ring
 - 1 beampipe, 1 km radius
- Run II: Mar 2001-Sept 2011
- Provided pp collisions at 1.96 TeV to CDF/DØ
 - 36x36 bunches
 - ~E10-E11 particles per bunch
 - ~21μs per revolution
 - ~1.5 MJ beam energy
- Thanks to FNAL Beams Division!
 - Peak inst.: >4.2E32 cm⁻²/s
 - ~70/pb delivered/week
 - ~12/fb delivered/exp.
CDFII: a Multipurpose Collider Detector

- ~5K tons (~2.5K central only)
- ~10 m each direction
- ~100 Hz readout
- ~720 K silicon tracker readout channels
- Muon chambers: |\(\eta \)|<1.5
- Silicon tracking |\(\eta \)|<2-2.5
- Drift cell tracker 1.4 Tesla B field, |\(\eta \)|<1.1
- Pb/Cu/scint calor. |\(\eta \)|<3.2
 - JES uncertainty 2-3%
SM Higgs Production at The Tevatron

Associated Production:
Most Sensitive at $M_H < 135$

Direct Production:
Most Sensitive at $M_H > 135$
Some of the Many Final States in Associated Production

CDF Candidate
ZH → νν bb
Data Event

Jet

Missing Energy

CDF Candidate
ZH → eebb
Data Event

Jet

CDF Candidate
WH → eνbb
Data Event

Jet
1 SM Higgs, Many Decays

For the 2012 CDF Winter results:
- SM predicts ~167 Higgs (125 GeV) events *reconstructed and selected*
- SM background of ~200K

Partitioned over many final states
- Low (<150 GeV) mass
 - WH, ZH, METbb, ttH, γγ, VBF → bbjj
- High (>150 GeV) mass
 - WWW, WWZ, WW, ZZ, τ-decays, full/semi-leptonic...

16 CDF analyses:
- 93 orthogonal sub-channels.

Small signal on diverse background
- Maximizing signal acceptance is key
Quantitative Statements About Small Signals

- **Reconstruct, select events**
 - Simulate background processes

- **Optimize signal significance**
 - Avoid cutting any signal events!
 - Discriminant distribution:
 - Dijet mass
 - Neural network, BDT, Matrix element probability
 - Background rich regions can be used to constrain backgrounds underneath signal, and constrain systematic uncertainties

\[S/B \text{ is Really Small} \]
Quantitative Statements About Small Signals

- Bayesian Method:
 - Compare 2 models:
 - BG-only
 - BG+signal hypotheses
 - Compute Poisson Likelihood
 - Compatibility of data with each hypothesis
 - Compute posterior probability density:
 - Cross section scaling: \(R = \frac{\sigma}{\sigma(\text{SM})} \)
 - Flat Prior: \(R = [0, \text{Large #}] \)
 - Nuisance parameters:
 - Detector response, background cross sections, PDFs, etc.
 - Integrate likelihood over nuisance parameters:
 - Produces posterior probability as function of \(R \) alone

Upper Limit
Exclude: < 1xSM

Observe?
Quantitative Statements About Small Signals

- Perform this analysis for each assumed Higgs Mass:
 - For data (Observed upper limit)
 - Construct ensemble of *background-only* pseudoexperiments (Expected sensitivity)
 - Each has same statistical uncertainty as data
 - Shaded bands show *background-like* statistical and systematic excursions
CDF: Relentless Pursuit

- CDF analyses improve far beyond adding data.
 - Improvements made are beyond those projected in 2007!
 - \([(2007 \, \text{Exp})/1.5, \, (2007 \, \text{Exp})/2.25]\)

- Adding data alone to the 2007 analyses would have required >30/fb to reach SM MH=115 cross section sensitivity!

![Graph showing expected limits and SM cross sections over time](attachment:image.png)
CDF Combined Higgs Search: 2011

- Better than 2xSM over non-excluded range
 - Broad excess 100-150 GeV
 - Not significant (~0.5-\(\sigma\))
 - \(M_{jj}\) resolution \(\sim\) +/-15 GeV
 - Most sensitive searches at 125 GeV, \(\sim\)equal:
 - \(WH\rightarrow l\nu bb\)
 - \(ZH\rightarrow llbb\)
 - \(WH+ZH\rightarrow METbb\)
 - \(H\rightarrow WW\rightarrow l\nu l\nu\)

- Sensitivities add roughly as inverse quadrature
New Major Improvements

- Summer 2011 results used 7.5-8/fb
 - Luminosity quoted depends on each final state
 - Full CDF dataset results (9.4-10/fb) presented here

- Improved b-jet identification:
 - More acceptance: ~10-15% better sensitivity in WH, ZH
 - less background

- Inclusive online selection

- More efficient offline selection
 - See H→WW presentation (R. St. Denis)

- Improved background discrimination
Identifying Jets from Hadronic Higgs Decays

- 2011: CDF WH (ZH,VH) used 3 (2) different b-taggers in orthogonal series

- 2012: New CDF Neural Network b-tagger
 - Uses most sensitive variables from previous CDF taggers
 - Uses semileptonic b-decay muons, Jet tower mass, secondary vertex mass...
 - Can tag jets with only one charged particle track
 - Continuous variable output allows for analysis group to choose cuts:
 - Optimize expected sensitivity
 - For identical false-positive rates of previous taggers, b-jet efficiency:
 - Tight: 38.6→53.6%
 - False Positive: 1.4%
 - Loose: 47.1→59.3%
 - False Positive: 2.8%
Calibration of 2012 b-Jet Tagger
In Multiple Control Samples

- Calibration samples
 - Kinematic selection of W+4,5 jets events (di-top)
 - QCD dijets with low relative-pt electrons
 - Not an input to tagger
 - Semileptonic decay electrons
 - Enriched in b,c
 - Photon conversion electrons (New method)
 - Primarily u,d,s,c,g
 - Examine both e-jet and opposing side jets
- These samples produce correction factors and uncertainty estimates for simulated events
- Resulting b-jet tag-rate corrections: ~5%±4%
Deployment of 2012 NN b-jet ID

- After calibration of LF and b-jet responses
 - Examine data/MC yields in samples of W+jets
 - W+1jet: largely u,d,s,c,g
 - W+4,5 Jet: Di-Top
 - real b-jets
 - W+2,3: Mixture
 - Good agreement overall
 - ~40% K-factor uncertainties for W+jets
Improved Discrimination

- Both WH and ZH now performing Multi-stage discriminants:
- Gets background out from under signal
- Prevents the need for cuts
 - 4% gain in WH 3-jet bin (removing di-top)
 - ~7% gain in ZH by separating di-top and ZZ

![Diagram](image.png)
WZ+ZZ: Validating Methods

- CDF detects SM-compatible semi-leptonic WZ and ZZ over a tagged background of dijets.
 - $l\bar{l}bb, l\nu\bar{l}bb$
 - Identical final state as a “90 GeV Higgs”
 - See upcoming talks at Moriond EWK and QCD by J. Vizan Garcia and J. Sekaric
- SM expected yields for WH,ZH,VH:
 (Summed over all subchannels)
 - ~ 215 WZ+ZZ
 - ~ 591 H→bb (MH=90)
 - ~ 84 H→bb (MH=125)
- Measured Cross Section to be released next week!
- Additionally, The newly generated 90 GeV Higgs signal MC will test our dijet modeling lower in Mjj than ever before.
2011→2012 Limit Comparisons

● WW, METbb:
 - Biggest improvement is data update
 - ~11-12% sensitivity improvement everywhere
 - Overall behavior of limits should not dramatically change
2011→2012 WH Limit Comparisons

- Added data + improved tagging + new triggers + update of 3-jet bin:
 - 22.7→40.2 Expected Signal Events!!!
 - Roughly 30% stronger expected limits
ZH Analysis:
Total sensitivity improvement after systematics: 58% @ MH=120
- New Data: ~11%
- Improved lepton Acceptance: ~8%
- New b-tagger: ~12%
- Other Improvements ~5-10 each%
 - Exclusive Z+2,3-jet categories
 - Previously had inclusive 2-jet category
 - Expert ZH, ZZ separator
 - Higher threshold on jets
 - Dijet mass resolution: 12%→9.6%
 - Improved MET calculation,
 less sensitive to underlying event
2011→2012 ZH Limit Comparisons

- Total Yield:
 - 5.3(1388)→7.2(1211) expected S(B) events.
 - Per-event Tagging Efficency was 60%, now is 69%
 - Better rejection of BG
 - Double integrated signal significance!
 - EPS 2011 Limit Median is at 2012 +1-σ!
2011→2012 Full Limit Comparisons

- Major gains in expected sensitivity from data and tagging
 - ~30% from 115-125
 - ~15% at high mass
 - CDF expects to be sensitive to at most $\sqrt{2}$*SM @ MH=130
 - Expects to exclude [152-175] GeV
● Next Week:
 - Release observed limits next Weds at Moriond!
 - **Tevatron Combination** talk at Moriond EWK by Wade Fisher!
 - Potential for ~1xSM exclusion sensitivity

● Near Future
 - Consolidate improvements across all channels
 - >5% improvement in 125 GeV sensitivity still possible
 - Publish PRL/PRD/NIM for analyses/methods
Conclusions

● The CDF Collaboration has produced Higgs searches with expected sensitivities a factor of 2 better than 2007 beyond luminosity additions!

● CDF is sensitive to $<\sqrt{2}\times\text{SM}$ Everywhere
 - $2\times\text{CDF}$ would have $>25\%$ chance of 3-sigma!

● Tevatron Leads in $H\rightarrow bb$

● The Tevatron full dataset combined Higgs search will be exciting!
Conclusions

- For additional details see
 - Tevatron: http://tevnphwg.fnal.gov/results/SM_Higgs_Winter_12/
 - CDF: http://www-cdf.fnal.gov/physics/new/hdg/Results.html
 - D0: http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.html

- Thanks to everyone at CDF who contributed to this update!
- Bigger thanks to everyone who designed, built, or operated CDF!
- FNAL Computing Division: Thanks for all the computing power and software!
- FNAL Beams Division: Thanks for all the collisions!
- Photographs of Fermilab and its wildlife were taken by Reidar Hahn, FNAL VMS
Thank you for your attention

Questions?
CDF JES

- JES

![Graph showing uncertainties on JES against corrected transverse momentum (p_T^corr) in GeV/c.]
FIG. 1: Kinematic coverage of the DIS and collider pp-$p\bar{p}$ experiments. For pp and $p-\bar{p}$ colliders, the Bjorken x_1 and x_2 of the interacting quarks are related to the mass M of the Drell-Yan pair and its rapidity y as $x_{1,2} = M/\sqrt{S} \exp(\pm y)$ where S is the center of mass energy squared for the experiment.
Comparing The Higgs Search To Single-Top Discovery

- Same machinery was run for the Single Top obs/discovery 2008-9

- Currently going through same steps with WZ/ZZ→ leptons+HF to validate low-Mass Higgs Search
Comparison To EWK Diboson