Tevatron Results on SM Higgs Search in the High Mass Region

Dr. Richard St. Denis
Glasgow University
On behalf of the CDF and D0 Collaborations
Lathuile 2012, La Thuile, Italy
February 27-March 3, 2012

Outline

● Search Foundation and Higgs detection modes
● CDF and D0 detection methods in High Mass
● Results, implications, next steps
Higher Physics Reach

Jet

Δm_s = 17.77 ± 0.10 ± 0.07

Build on mountain of measurements
SM Higgs Production and Decay

Gluon Fusion
(dominates)

Associated production

Vector Boson Fusion

- Trigger: 1 High Pt e or \(\mu \)
- Focus on Decays: \(WW \rightarrow ee, e\mu, \mu\mu, e\tau, \mu\tau + \nu\)’s
- Separate channels by dileptons (D0), \(N_{\text{jets}} \)
- Event Selection: High Pt Leptons, Missing \(E_T \)
HWW Production Features

- High Pt Leptons not back to back
- Spin 0 Higgs correlates spins of leptons: charged leptons (low $\Delta\phi_{ll}$), two neutrinos (High MET) tend to be closely aligned with one another.
Dileptons, Iso p_t > 15, 10 GeV/c

BDT or M_t(eµ) (0, 1, ≥2 Jet)

BDT 58 H^0

Z/γ

M_{ll}

Diboson

0J

1J

≥2J

Z/γ

ee

eµ

µµ

M_t = 165 GeV

Diboson

Z/γ
CDF Improvements

- 0,1 jet: M_H-dependent optimization of NN variables
- ≥2 jet: Alpgen model: use M_{jj} for WH-$\rightarrow l\nu l\nu jj$ and rapidity diff for VBF.
- $M_{ll}<16$ GeV/c2:
 - MadGraph $W\gamma$: $\Delta R \geq 0.1$ (was 0.2): 8.5% more Higgs at $M_H=160$ GeV/c2
 - MadGraph Jets +Z: Better modeling of Drell Yan

Control Region: $15<\text{MetSpec}<25$ GeV
CDF 9.7 fb$^{-1}$ Expect 67 Signal Events → Total W/D0: 125

Fit Background

Search H

Improved

CDF Run II Preliminary

OS 0 Jets, High S/B
$M_H = 165$ GeV/c2

$0J$

WW

S:31

$1J$

Hx10

S:18

CDF Run II Preliminary

OS 2+ Jets
$M_H = 165$ GeV/c2

$>1 J$

tt

Hx10

S:14

CDF Run II Preliminary

OS 1 Jet, High S/B
$M_H = 165$ GeV/c2

$1J$

WW

S:18

0,1 J

$M_{H} < 16$

WW

S:4
Control Region: Determine systematics, measure background rates:

- W+jet: $\Delta\phi_{l\tau} > 2$
- QCD: MET < 20 GeV
- DY $Z(\tau\tau)$: $\Delta\phi_{ll,MET} < 0.5$

Expected Signal: CDF e,μ, 2.4; D0μ: 5.3
Same sign Dileptons (CDF/D0), Trileptons (CDF)

No Rate? Too Low? No!

Different Channel
Different Systematics
Different Background

- Same Sign dileptons, Improved (CDF): optimized training:
 - WH
 - ZH
- Trileptons:
 - WH
 - ZH
- NEW (CDF): $l_1\tau_{\text{hadronic}}$:

SameSign

Trileptons: $ll\tau$

S: 3.1

Low, Different Background (WZ)

Improved

S: 0.5

New

S: 0.36

ZHx10

S: 1.3

WHx10
H\rightarrowZZ*\rightarrow4l

- Four leptons, $p_T > 20, 10, 10, 10$ GeV/c
- $gg\rightarrow H\rightarrow ZZ$, $ZH\rightarrow ZWW\rightarrow ll l^\nu l^\nu$
- Bin in MET to see ZWW; 2d fit.

Improved

S:0.41 @150
CDF 9.7 fb$^{-1}$

- 8.2 – 9.7 fb$^{-1}$: 8.5% better
- 2Jet, $M_{ll} \leq 16$ GeV/c2, τ trilepton, ZZ with MET, optimized M_H-dependent training on 0,1Jet
- All together: 12% better @165!
- CDF Sensitivity close to TeV sensitivity in July 2011.

New DØ Result, New Tev soon

CDF Run II Preliminary

- 148-180 GeV/c2

SM Exclusion: 156-177 GeV/c2

Summary

- “No channel too small” strategy successful: different, backgrounds, systematics, S/B and many channels.
- Combined Tevatron results coming next week. Up to now exclude the Standard Model Higgs at 95% CL for $156 \leq M_H \leq 177$ GeV/c2.

<table>
<thead>
<tr>
<th>M_H (GeV/c2)</th>
<th>8.2 fb$^{-1}$</th>
<th>9.7 fb$^{-1}$</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expected σ/σ_{SM}</td>
<td>Observed σ/σ_{SM}</td>
<td>Expected σ/σ_{SM}</td>
</tr>
<tr>
<td>125</td>
<td>3.38</td>
<td>3.28</td>
<td>3.08</td>
</tr>
<tr>
<td>165</td>
<td>0.78</td>
<td>0.77</td>
<td>0.69</td>
</tr>
</tbody>
</table>
CDF High Mass Higgs limits for Feb/March 2011

<table>
<thead>
<tr>
<th>High Mass</th>
<th>110</th>
<th>115</th>
<th>120</th>
<th>125</th>
<th>130</th>
<th>135</th>
<th>140</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-2\sigma/\sigma_{SM}$</td>
<td>5.39</td>
<td>2.95</td>
<td>1.88</td>
<td>1.29</td>
<td>0.96</td>
<td>0.74</td>
<td>0.64</td>
<td>0.52</td>
</tr>
<tr>
<td>$-1\sigma/\sigma_{SM}$</td>
<td>8.61</td>
<td>4.71</td>
<td>2.97</td>
<td>2.05</td>
<td>1.52</td>
<td>1.22</td>
<td>1.01</td>
<td>0.86</td>
</tr>
<tr>
<td>Median/\sigma_{SM}</td>
<td>13.06</td>
<td>7.07</td>
<td>4.47</td>
<td>3.08</td>
<td>2.29</td>
<td>1.85</td>
<td>1.53</td>
<td>1.31</td>
</tr>
<tr>
<td>$+1\sigma/\sigma_{SM}$</td>
<td>19.03</td>
<td>10.25</td>
<td>6.51</td>
<td>4.49</td>
<td>3.34</td>
<td>2.67</td>
<td>2.24</td>
<td>1.91</td>
</tr>
<tr>
<td>$+2\sigma/\sigma_{SM}$</td>
<td>26.57</td>
<td>14.32</td>
<td>9.21</td>
<td>6.28</td>
<td>4.62</td>
<td>3.75</td>
<td>3.17</td>
<td>2.69</td>
</tr>
<tr>
<td>Observed/\sigma_{SM}</td>
<td>17.28</td>
<td>11.52</td>
<td>4.96</td>
<td>2.98</td>
<td>2.81</td>
<td>1.85</td>
<td>1.84</td>
<td>1.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>150</th>
<th>155</th>
<th>160</th>
<th>165</th>
<th>170</th>
<th>175</th>
<th>180</th>
<th>185</th>
<th>190</th>
<th>195</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.46</td>
<td>0.40</td>
<td>0.32</td>
<td>0.30</td>
<td>0.34</td>
<td>0.42</td>
<td>0.47</td>
<td>0.58</td>
<td>0.75</td>
<td>0.86</td>
<td>1.00</td>
</tr>
<tr>
<td>0.74</td>
<td>0.64</td>
<td>0.48</td>
<td>0.46</td>
<td>0.54</td>
<td>0.65</td>
<td>0.75</td>
<td>0.96</td>
<td>1.18</td>
<td>1.40</td>
<td>1.59</td>
</tr>
<tr>
<td>1.13</td>
<td>0.96</td>
<td>0.71</td>
<td>0.69</td>
<td>0.81</td>
<td>0.97</td>
<td>1.13</td>
<td>1.46</td>
<td>1.80</td>
<td>2.10</td>
<td>2.42</td>
</tr>
<tr>
<td>1.66</td>
<td>1.41</td>
<td>1.03</td>
<td>0.99</td>
<td>1.19</td>
<td>1.41</td>
<td>1.65</td>
<td>2.15</td>
<td>2.63</td>
<td>3.10</td>
<td>3.57</td>
</tr>
<tr>
<td>2.32</td>
<td>1.97</td>
<td>1.43</td>
<td>1.39</td>
<td>1.65</td>
<td>1.95</td>
<td>2.31</td>
<td>2.99</td>
<td>3.71</td>
<td>4.30</td>
<td>4.99</td>
</tr>
<tr>
<td>0.94</td>
<td>0.83</td>
<td>0.50</td>
<td>0.40</td>
<td>0.84</td>
<td>0.99</td>
<td>1.26</td>
<td>1.87</td>
<td>2.56</td>
<td>5.10</td>
<td>5.33</td>
</tr>
</tbody>
</table>