$|V_{cb}|$ from inclusive tag $B \rightarrow D\ell\nu$

Philipp Horak Christoph Schwanda

HEPHY Vienna

JENNIFER2 Project General Meeting

B2N-4073 b2n-2024-004@belle2.org June 2, 2024

Status of $|V_{cb}|$ and $|V_{ub}|$

 $|V_{cb}|$ and $|V_{ub}|$ constrain the SM through unitarity triangle

Important input in SM predictions

Semileptonic B decays are studied to measure $|V_{cb}|$ and $|V_{ub}|$

- Factorizable leptonic and hadronic currents
- Exclusive: Reconstruct specific final states
- i.e.:

$$|V_{cb}|: B \to D^{(*)}\ell\nu$$

 \blacktriangleright $|V_{ub}|: B \to \pi \ell \nu$

Theory input: Lattice QCD (LQCD)

Inclusive: Measure general $X\ell\nu$ decay

i.e.:

$$|V_{cb}|: B \to X_c \ell \nu$$
$$|V_{ub}|: B \to X_u \ell \nu$$

 Theory input: Heavy Quark Expansion Theory (HQET) Status of $|V_{cb}|$ and $|V_{ub}|$

 $\sim 3\sigma$ discrepancy between inclusive and exclusive $|V_{cb}|$ and $|V_{ub}|$ measurements Limiting factor in precision flavor physics

Analysis overview

- Untagged/Inclusive tag analysis of $B \rightarrow D\ell\nu$ final state
- Extract differential decay rates in bins of w to measure V_{cb}
- Modes:
 - ► Charged B mode $B^- \to D^0 \ell^- \overline{\nu}_\ell$ with $D^0 \to K^- \pi^+$
 - ► Neutral B mode $B^0 \rightarrow D^- \ell^+ \nu_\ell$ with $D^- \rightarrow K^+ \pi^- \pi^-$
- Parameters of interest:
 - > Differential decay rates in bins of momentum transfer $\Delta\Gamma/\Delta w$
 - Absolute branching ratios $\mathcal{B}(B \to D \ \ell \ \overline{\nu}_{\ell})$
 - \triangleright V_{cb} , BGL form factor parameters
 - > Lepton universality $R_{e/\mu}$

$|V_{cb}|$ extraction

From measuring signal yields in bins of w, calculate differential decay rates
Differential decay rate:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}w} \left(B \to D\ell\nu_{\ell} \right) = \frac{G_F^2}{48\pi^3} (m_B + m_D)^2 m_D^3 \eta_{EW} |V_{cb}|^2 (w^2 - 1)^{3/2} \mathcal{G}(w)^2$$

- with the form factor $\mathcal{G}(w)$
- with the kinematic variable $w = v_B \cdot v_D = \frac{p_B \cdot p_D}{m_B m_D} = \frac{m_B^2 + m_D^2 q^2}{2m_B m_D}$

 $w_{min} = 1$: zero-recoil point, q_{max}^2 , D at rest in B rest frame

- Analyze $B^+ \to \overline{D}^0 \ell^+ \nu_\ell$ and $B^0 \to D^- \ell^+ \nu_\ell$
- Final state particles ℓ and hadrons from $D^{0(+)} \rightarrow K^- \pi^+(\pi^+)$
- Dominant background from $B \to D^* \ell \nu$ decays
 - Explicit vetoes
- Vertex fitting full decay chain to suppress combinatorial background

Variable	Charged B	Neutral B
$KSFW_{hso}^{02}$	[-0.371,0.485]	[-0.361,0.457]
E_Y^* [GeV]	[3.247,5.169]	[3.340, 5.174]
p^*_{miss} [GeV]	[0.698,4.345]	[0.745, 4.389]
m_{ROE} [GeV]	[0.510, 7.967]	[0.756,6.771]
$\cos \theta_{\ell,W}$	[-0.821, 0.553]	[-0.828, 0.866]
p_{ROE} [GeV]	[0.069, 2.858]	[0.091, 2.738]
$\theta_{D,\ell}$	[0.120, 3.137]	[0.339, 3.136]

- Suppress backgrounds by simultaneously optimizing rectangular selections using simulated annealing
- Kinematic variables
- Event shape variables
- rest-of-event variables

Reconstruction of kinematic variable q^2

- \blacksquare How to reconstruct kinematic variable w in untagged approach?
- Need to know direction of signal B meson
- Novel approach : (extension of BaBar's diamond frame [Phys. Rev. D 74, 092004])

- **Calculate** $\cos \theta_{BY}$ from reconstructed D and ℓ
- $B\overline{B}$ production: angularly distributed according to $\sin^2 \theta_B$
- Sum up left-over tracks and clusters as Rest-of-Event (ROE) and calculate momentum p^*_{ROE}
- Likely direction on $\cos \theta_{BY}$ cone: Back-to-back with ROE
- Weighted average over 10 uniformly distributed vectors on cone
- Each vector has weight combining ROE and kinematic information:

 $\frac{1}{2}(1-\hat{p}_{\mathsf{ROE}}\cdot\hat{p}_{\mathsf{B}})\sin^2\theta_B$

\hookrightarrow Improved resolution compared to previous methods!

Corrections to MC

- Use sidebands and control samples to calibrate backgrounds
- Important to have good Data-MC agreement in fitting variable $\cos heta_{BY}$
- Calibration samples including sideband m_D sideband, wrong charge combination reconstruction, off-resonance data
- Calibrate correction on sidebands and apply to nominal reconstruction

Additionally correct for known effects:

- ParticleID
- Track momentum scale
- Decay file branching fractions
- > $D^{(*)}\ell\nu$ form factors
- etc.

Checking signal distribution with control samples

- To make sure signal distributions are well understood in all selection variables:
 - Reconstruct control samples that look similar to signal and have high purity
- Fully hadronic:
 - \triangleright $B \rightarrow D\pi$: Treat π as lepton
- Missing energy/momentum through partial reconstruction:
 - ▶ $B \rightarrow [D^* \rightarrow D\pi_{slow}]\pi$: Treat slow π as missing
 - ► $B \to [J/\psi \to \ell \ell][K^* \to K^- \pi^+]\pi$: Treat second ℓ as missing

- Good Data/MC agreement in variables
- Correct for disagreement in vertex fit probability and assign systematic

Signal extraction

- Simultaneously fit signal yields in 10 windows of w for each of 4 decay modes
- Binned template fit using pyhf
- Fitting variable: $\cos \theta_{BY}$

- Novel approach: directly unfold migration effects between *w* bins in fit
- Include all systematic uncertainties into the fit as nuisance parameters
 - Directly maps into correlation matrix between signal yields

- From fitted yields we can calculate $\Delta\Gamma/\Delta w$
- Average over all 4 modes
- Fit form factor to differential decay rates (BGL/BCL parameterization)
- Include data from Lattice QCD in fit as nuisance parameter

$V_{cb,BGL}$	
Stat. Error	0.74%
MC Stat. Error	0.37%
N _{bb}	0.77%
f_{00}/f_{+-}	0.04%
$B(D \rightarrow K\pi(\pi))$	0.45%
Selection	0.25%
$B(B \rightarrow X_c \ell \nu)$	0.16%
LeptonID	0.14%
KaonID	0.45%
Tracking efficiency	0.50%
$B \rightarrow D \ell \nu$ form factor	0.79%
$B \rightarrow D^* \ell \nu$ form factor	0.11%
$\cos \theta_{BY}$ background modelling	0.13%
w background modelling	0.46%
$\tau_{B^{0/\pm}}$	0.10%
Total systematic	1.50%
Theory	1.24%
Total	2.07%

- Currently pre-unblinding
- Estimate impact of systematic uncertainty sources by drawing toys from nuisance parameters
- Estimated ~ 2.1% sensitivity → more sensitive than Belle Dℓν measurement (~ 2.7%)

Summary

- Long-standing tension between inclusive and exclusive determinations of V_{cb}
- Analysis of untagged $B^- \to D^0 \ell^- \overline{\nu}_\ell$ events to measure V_{cb} exclusively
- New analysis techniques to optimize selections and reconstruct kinematic variables
- Define control samples to validate signal and background distributions
- Projected total uncertainty on V_{cb} : 2%
- Currently in review committee stage

Thank you!