Hyper-K simulation

Tom Dealtry

Lancaster University

June 2nd, 2024

- Deliverable due March 2026
 - simulation data analysis with the final photosensor configuration
- Have 3 pieces of software to do this
 - Geant-4 physics, PMT & electronics simulation
 - WCSim is the current package
 - O GHOST is the new package
 - Triggering using TriggerApp

2 GHOST

3 TriggerApp

WCSim

- An open-sourced, Geant4-based simulation code for water Cherenkov detectors
- User can define a detector configuration by choosing:
 - Detector geometry
 - ★ SK, Hyper-K far detector, IWCD, WCTE, ...
 - PMT type
 - ★ SK 20", HK 20", mPMT 3", OD 3", ...
 - Electronics
 - ★ SKI
 - Simple triggers
 - ★ NHits, pass all
- Run particles in your detector using either:
 - Input from neutrino interaction generators
 - or using Geant4 particle generation

New far detector geometry

Realistic implementation based on integration drawings

- PMTs placed in realistic positions
 - ▶ 20"
 - ► mPMTs
 - OD

Realistic implementation based on integration drawings

- New tank size
- New number of mPMTs
- New number of OD PMTs
- New OD water thickness

Charge

Digitised

Calibration source generator

Implemented event generator to simulate photon emission from light injectors

- Specify parameters for each LI source in JSON file
 - Position

. . .

- Direction
- Emission profile
- Wavelength

3 TriggerApp

4 Summary

GHOST

- WCSim is
 - Not very modular = hard to develop
 - Uses old C++11 standard
 - Uses old Geant4 v10.3.3 [October 2017]
 - Single threaded = inefficient
 - New features have been added in inconsistent ways
 - ★ e.g. with addition of multiple PMT types, can set dark rate options per PMT type, but not digitiser options
 - Not tuned to data (or other MC) for a few years
- Enter GHOST
 - Geant4 H₂O Simulation Tool

Lancaster, Glasgow

- Through many meetings, we wrote a code design document to plan the GHOST structure
- v1 = WCSim restructured
 - Implementation ongoing
 - Setting up CI to automatically compare results with WCSim
 - Aim to release v1 in 2024
- v2 = simulation improved
 - Improve many aspects of the simulation
 - ★ Geometry
 - ★ Update PMT/electronics simulation
 - Add new features
 - ★ More calibration sources
 - ★ Allow PMT properties to be set per PMT
 - \star Read calibration database to simulate detector as it was at time t
 - Validate against / tune to SKG4 MC & WCTE data

Tom Dealtry (Lancaster University)

- TriggerApp designed & developed in UK
- TriggerApp can act on both data & MC
 - ▶ Easier to maintain & validate just one version of the algorithms
 - Limits chance of using inconsistent triggering in data & MC

- MC-ready, and been a good test bed for novel triggers
 - $\blacktriangleright \rightarrow \mathsf{MC}\text{-} \& \mathsf{data}\text{-}\mathsf{ready}$
- Single-threaded; can't use the full power of the multi-core online triggering machines
 - $\blacktriangleright \rightarrow \mathsf{Multi-threaded\ tools}$
- \bullet ROOT dependence in online tools \rightarrow memory leaks
 - \blacktriangleright \rightarrow only use ROOT for MC I/O
- Some things are inherently slow
 - \blacktriangleright \rightarrow Implement improved algorithms

- Automatic multi-threading & load-balancing design implemented
- $\bullet~$ MC I/O implemented
 - WCSim file format I/O tools complete
 - Simplified output file format tool being polished
- Trigger pipeline outlined
 - Simple test sort/trigger/trigger merging tools implemented
 - Efficient sorting, & NHits trigger algorithms being input now
 - Other trigger algorithms will be added soon

Lancaster, RAL

Trigger development: Multi-Layered Perceptron

- Take basic hit information: time, position, (charge)
- Construct simple variables from this information
 - Many variables implemented
 - More ideas to be implemented...
- Train a TMVA on multiple mono-energetic low-energy electron particle guns
 - MLP has performed best so far
- Under development. Initial results promising

Trigger development: Convolutional Neural Network

- Take basic hit information: time, position, (charge)
- Construct a 2D image based on hits in ${\sim}400\,{
 m ns}$
- Convert image into a tensor
 - CNN requires *pixels* to be regularly spaced
- Train a CNN / sparse CNN on the 2D image
- Under development. Initial results promising

- Using same software for HK's far detector & IWCD
 - More efficient coding by just doing it once
 - Allows consistent models, systematics, etc.
- WCSim development ongoing
 - New IWCD & far detector geometries
 - New calibration source generator
- GHOST is being developed as the replacement for WCSim
 - v1 with better structure for future developments ongoing
 - v2 will bring many simulation improvements
- TriggerApp development ongoing
 - v2 with multi-threading structure implemented
 - Trigger algorithms being ported into v2
 - MLP & CNN triggers are promising, but work ongoing