μ **TRISTAN:** μ^+e^- and $\mu^+\mu^+$ collider

Yu Hamada (DESY)

Based on:

- 2201.06664, YH, R. Kitano, R. Matsudo, H. Takaura, and M. Yoshida
- 2210.11083, YH, R. Kitano, R. Matsudo, and H. Takaura
- 2406.04500, L. Chen, YH, and S. Iguro
- 2408.01068, YH, R. Kitano, R. Matsudo, S. Okawa, R. Takai, H. Takaura, and L. Treuer

19th Sep 2024, LFC24@SISSA

• Introduction: What is μ TRISTAN?

• Higgs physics at μ TRISTAN

• New physics search at μ TRISTAN

• Summary

Introduction: What is μ TRISTAN?

Task of future collider

1. Go to higher energy

production of new particle→ direct search

2. Precision measurement
 probe deviation from SM
 → indirect search

• Muon colliders are very nice for both!

precision measurements ← lepton collider

high energy e.g. O(10) TeV \leftarrow less synchrotron rad. than e^{\pm}

We need many particles and narrow beam!

Current difficulties of $\mu^+\mu^-$ collider

- **MAP** (Muon Accelerator Program)
 - μ^{\pm} produced from π^{\pm} decay → too hot, randomly distributed \rightarrow cooling with ionized material principle works (MICE), but not yet enough

[1907.08562]

LEMMA (Low Emittance Muon Accelerator)

Liquid Hydrogen

Re-acceleration

& Matching

[from side by Daniel Schulte]

re-acceleration

μ

 $e^+e^- \rightarrow \mu^+\mu^-$ at threshold

→ almost at rest i.e. already cold, but less amounts

 $\frac{d\epsilon_{\perp}}{ds} = -\frac{1}{(v/c)^2} \frac{dE}{ds} \frac{\epsilon_{\perp}}{E} + \frac{1}{2} \frac{1}{(v/c)^3} \frac{dE}{ds} \frac{e}{e} \frac{1}{E} \frac{1}{E}$

Technology for μ^+ cooling exists!

• J-PARC is planning μ g-2/EDM experiment.

The key technology is cooling of μ^+ , which is available today!

Technology for μ^+ cooling exists!

• J-PARC is planning μ g-2/EDM experiment.

The key technology is cooling of μ^+ , which is available today!

Technology for μ^+ cooling exists!

World's first cooling and acceleration of muon

Home > Press Release > Materials and Life Science > - The first muon accelerator finally coming to a reality. -

2024.05.23

World's first cooling and acceleration of muon - The first muon accelerator finally coming to a reality. -

Question

* If muons can be accelerated in an accelerator, it is expected to be useful in a variety of fields such as elementary particle physics, material and life sciences, and earth science. For example, such muons are useful for ultra-precise measurement of anomallous magnetic moment (g-2)

ready to be accelerated

 \mathbb{X}

https://www.j-parc.jp/c/en/press-release/2024/05/23001341.html

Comparison of beam emittance

Comparison of beam emittance

Proposal of new experiment: μ TRISTAN!

high-quality μ^+ beam accelerated to O(1) TeV

- $\mu^+ e^-$ collider
 - $E_{\mu^+} = 1 \text{ TeV}, \quad E_{e^-} = 30 \text{ GeV} \text{ (TRISTAN energy)}$

$$\rightarrow \sqrt{s} = 346 \,\text{GeV}$$
 $\mathscr{L}_{\mu^+ e^-} = 4.6 \times 10^{33} \,\text{cm}^{-2} \text{s}^{-1}$

Higgs factory/EW precision

• $\mu^+\mu^+$ collider (instead of $\mu^+\mu^-$)

$$E_{\mu^+} = 1 \text{ TeV}, \quad E_{\mu^+} = 1 \text{ TeV}$$

 $\rightarrow \sqrt{s} = 2 \text{ TeV} \qquad \mathscr{L}_{\mu^+\mu^+} = 5.7 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

New physics search/Higgs factory(!?)

Design of μ TRISTAN

[YH, Kitano, Matsudo, Takaura, Yoshida, 2201.06664]

Plan of talk

• Introduction: What is TRISTAN?

• Higgs physics at μ TRISTAN

• New physics search at μ TRISTAN

• Summary

Higgs physics at μ TRISTAN

[YH, Kitano, Matsudo, Takaura, Yoshida, 2201.06664]

Due to the large luminosity, the μ^+e^- collider is more suitable.

$$(E_{\mu^+}, E_{e^-}) = (1 \text{ TeV}, 30 \text{ GeV})$$
 $\sqrt{s} = 346 \text{ GeV}$
 $(P_{\mu^+}, P_{e^-}) = (0.8, -0.7)$

Main process: W-boson fusion $\sigma_{\rm WBF} \simeq 91 \, {\rm fb}$

• luminosity
$$\mathscr{L}_{\mu^+e^-} = 4.6 \times 10^{33} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$$

•
$$\int dt \, \mathscr{L}_{\mu^+ e^-} = 1.0 \, \mathrm{ab}^{-1} \, \mathrm{w/ten-year \, running}$$

→
$$N(\text{Higgs}) = 9.5 \times 10^4 \times \frac{(\text{integrated luminosity})}{1.0 \, \text{ab}^{-1}}$$

Higgs precision measurement is possible!

Higgs coupling measurement

[YH, Kitano, Matsudo, Takaura, Yoshida, 2201.06664]

- Higgs mainly decays into $b\bar{b}$ (Br. = 58.2 % in SM)
- All couplings are parameterized by κ 's (κ -scheme)

UU. 170 measuren

 $\kappa_{\bullet} = 1 + \Delta \kappa_{\bullet}$

 κ 's can be measured with the statistical uncertainty:

$$\left|\Delta\kappa_W + \Delta\kappa_b - \Delta\kappa_H\right| \lesssim 3.1 \times 10^{-3} \times \left(\frac{\text{integrated luminosity}}{1.0 \text{ ab}^{-1}}\right)^{-1/2} \left(\frac{\text{efficiency}}{0.5}\right)^{-1/2}$$

Higgs production @ $\mu^+\mu^+$?

- Naively, only ZBF is possible at $\mu^+\mu^+$ collider \rightarrow suppressed?
- However, γ-emitted WBF can be significant at high energy!!

Higgs production @ $\mu^+\mu^+$?

[2408.01068, **YH**, Kitano, Matsudo, Okawa, Takai, Takaura, and <u>Treuer</u>]

Plan of talk

• Introduction: What is TRISTAN?

• Higgs physics at μ TRISTAN

• New physics search at μ TRISTAN

• Summary

New physics search at μ TRISTAN

Slepton production at μ TRISTAN

[YH, Kitano, Matsudo, Takaura, Yoshida, 2201.06664]

- For simplicity, only Wino \tilde{W} exchange (no other neutralinos)
- Mass parameter region where # of events exceeds 100 (We do not consider decay of sleptons)

Indirect new physics search at μ TRISTAN

[YH, Kitano, Matsudo, Takaura, 2210.11083]

Constrain SMEFT dim-6 operators via Møller scattering

with 95% C.L. We can detect $^{P}A^{+} \leq ^{P}100^{\pm}TeV$ at most!

Weak mixing angle at μ TRISTAN

Møller-like scattering btw $\mu^+ e^-$

scan over wide range with precision!

Summary

• We proposed a new collider μ TRISTAN using ultra-cold μ^+ , which is already available!

 $\mu^+ e^- \text{ collider}$ $\mathscr{L}_{\mu^+ e^-} = 4.6 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ $\sqrt{s} = 346 \text{ GeV}$

- Higgs factory \rightarrow coupling measurement w/ O(0.1) % precision
- Weak mixing angle measurement

 $\mu^{+}\mu^{+}$ collider $\mathscr{L}_{\mu^{+}\mu^{+}} = 5.7 \times 10^{32} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ $\sqrt{s} = 2 \,\mathrm{TeV}$

- direct NP search like slepton
- indirect NP search based on SMEFT $\rightarrow \Lambda \simeq 100 \, {\rm TeV}$ at most
- Higgs factory at higher energy (γ -emit WBF)

Backup

Higgs production @ $\mu^+\mu^+$?

[2408.01068, **YH**, Kitano, Matsudo, Okawa, Takai, Takaura, and Treuer]

$$\sigma_{\gamma W}(s) = \frac{\pi \alpha^2}{m_W^2 \sin^2 \theta_W} + \mathcal{O}\left(\frac{1}{s}\right) \qquad \because \sigma_{\gamma W} \sim \left(\frac{s}{t - m_W^2} \frac{\partial}{m_W}\right)^2 \times \frac{1}{s}$$

$$\sigma_{\gamma}(s) \simeq 2 \int_{xys > s_{\min}} \mathrm{d}x \mathrm{d}y \, f_{\gamma/\mu^{+}}(x, \mu_{f}^{2}) \, f_{W_{\mathrm{L}}^{+}/\mu^{+}}(y) \, \sigma_{\gamma W}(xys)$$

 $\mu_f^2 = xys$

Higgs production cross section

Higgs production @ $\mu^+\mu^+$?

Center-of-Mass Energy [TeV]	1	2	3	10	30
$\sigma(\mu^+\mu^- \to \overline{\nu}\nu h) \qquad \text{[fb], } P_{\mu^\pm} = 0$	211	385	498	842	1165
$\sigma(\mu^+\mu^+ \to \mu^+ \overline{\nu} W^+ h)$ [fb], $P_{\mu^+} = +0.8$	15.6	61.0	109	371	799
$\sigma(\mu^+\mu^+ \to \mu^+ \overline{\nu} W^+ h)$ [fb], $P_{\mu^+} = 0$	7.05	27.7	49.9	172	374
$\sigma(\mu^+\mu^+ \to \mu^+\mu^+ h)$ [fb], $P_{\mu^+} = +0.8$	29.0	53.8	70.4	121	168
$\sigma(\mu^+\mu^+ \to \mu^+\mu^+ h)$ [fb], $P_{\mu^+} = 0$	20.9	39.0	50.9	87.6	122

Table 1. We show the total cross section in the unit of fb for single Higgs production via W boson fusion in $\mu^+\mu^-$ collisions $(\mu^+\mu^- \to \overline{\nu}_{\mu}\nu_{\mu}h)$ with unpolarized beams, W boson fusion in $\mu^+\mu^+$ collisions $(\mu^+\mu^+ \to \mu^+\overline{\nu}_{\mu}W^+h)$ with both beams +0.8 polarized or unpolarized, and via Z boson fusion in $\mu^+\mu^+$ collisions $(\mu^+\mu^+ \to \mu^+\mu^+h)$ with both beams +0.8 polarized or unpolarized for different center-of-mass energies.

Indirect new physics search at μ TRISTAN

$$P_{\mu^+} = P_{e-} = \pm 1$$
 21

Indirect new physics search at μ TRISTAN

Efficiency

The efficiency to detect the events is important and under studied.

Background events

By reconstructing the invariant mass from b-jets, we would suppress the BG events.

• Coverage of detector in a small angle region

The produced particle is strongly boosted.

from slide by Toshiaki Kaji

Benchmark Detector : HL-LHC

Coverage of HL-LHC @ Delphes

• Muon |η| < 4.0

Delphes card for HL-LHC is used for this study.

https://github.com/delphe s/delphes/blob/3.5.0/cards /delphes_card_HLLHC.tcl

- Electron $|\eta| < 4.0$
- B-jet |η| < 4.0, pT > 25 GeV

<u>Tentative rough schematic for muon collider detector</u>

Forward muons should be detected by combination of forward magnet and muon detector.

Efficiency

from slide by Toshiaki Kaji

Efficiency : ~ 23%

→ 12k events @ 1 ab⁻¹
→
$$\Delta(\kappa_W + \kappa_b - \kappa_H)_{\text{stat}} = 0.5\%$$
 @ 1 ab⁻¹

Trilinear coupling in higher energy case

$$E_{\mu^+} = 3 \text{ TeV}, \quad E_{e^-} = 50 \text{ GeV}$$

 $\sqrt{s} = 775 \text{ GeV} \qquad (P_{\mu^+}, P_{e^-}) = (0.8, -0.7)$

• WBF process $\sigma_{\rm WBF} \simeq 472 \, {\rm fb}$

can probe Higgs trilinear coupling via 1-loop [Di Vita+, 1711.03978] $\left| \Delta \kappa_{W} + \Delta \kappa_{b} - \Delta \kappa_{H} + 0.006 \Delta \kappa_{\lambda} \right|$ $\lesssim 1.3 \times 10^{-3} \times \left(\frac{\text{integrated luminosity}}{1.0 \text{ ab}^{-1}} \right)^{-1/2} \left(\frac{\text{efficiency}}{0.5} \right)^{-1/2}$ $\longrightarrow \Delta \kappa_{\lambda} \leq 20\% \quad \text{(if other } \Delta \kappa \text{'s are zero)}$

• also probed by Higgs pair production

$$N(\text{di Higgs}) \simeq 89 \times \left(\frac{\text{integrated luminosity}}{1.0 \, \text{ab}^{-1}}\right)^{-1/2} \left(\frac{\text{efficiency}}{0.5}\right)^{-1/2} \longrightarrow \left|\Delta \kappa_{\lambda}\right| \lesssim 100 \%$$

 u_e

 u_e

 W^{-}

 \widetilde{W}^{-}

 W^+

If a larger 6 (or 9) km ring is available (Tevatron size), we can explore higher energy:

- $\mu^+ e^-$ collider $E_{\mu^+} = 3 \text{ TeV}, \quad E_{e^-} = 50 \text{ GeV}$ $\rightarrow \sqrt{s} = 775 \text{ GeV}$ Higgs factory
- $\mu^+\mu^+$ collider (instead of $\mu^+\mu^-$)

$$E_{\mu^+} = 3 \text{ TeV}, \quad E_{\mu^+} = 3 \text{ TeV}$$

 $\rightarrow \sqrt{s} = 6 \text{ TeV}$ New physics search

Comment on polarization

Polarization is important to enhance cross sections

- Electron beam polarization: $P_{e^-} = \pm 0.7$ same polarization as superKEKB
- Muon beam polarization: $P_{\mu^+} = \pm 0.8$

muon production sequence:

eg., P = 0.4 means 40 % is RH while 60% is unpolarized.

Thus $P_{\mu^+} = \pm 0.8$ would be a reasonable estimation.

SMEFT operator

$$\begin{split} Q_{HWB} &= H^{\dagger} \tau^{I} H W_{\mu\nu}^{I} B^{\mu\nu} & \longleftarrow \text{S parameter} \\ Q_{HD} &= (H^{\dagger} D_{\mu} H)^{*} (H^{\dagger} D_{\mu} H) & \longleftarrow \text{T parameter} \\ Q_{H\ell}^{(1)} &= (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\bar{L} \gamma^{\mu} L) \\ Q_{H\ell}^{(3)} &= (H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H) (\bar{L} \tau^{I} \gamma^{\mu} L) \\ Q_{H\mu} &= (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\bar{\mu} \gamma^{\mu} P_{+} \mu) \\ Q_{\mu\mu} &= (\bar{l}_{p} \gamma_{\mu} l_{r}) (\bar{l}_{s} \gamma^{\mu} l_{t}) \\ Q_{prst}^{le} &= (\bar{l}_{p} \gamma_{\mu} l_{r}) (\bar{e}_{s} \gamma^{\mu} e_{t}) \\ Q_{prst}^{ee} &= (\bar{e}_{p} \gamma_{\mu} e_{r}) (\bar{e}_{s} \gamma^{\mu} e_{t}) \end{split}$$

$$C_{\substack{\ell\ell\\e\mu\mu e}} = C_{\substack{\ell\ell\\\mu e e \mu}} \equiv C_{\ell\ell}.$$

• Beam size is determined by emittance

emittance:
$$\epsilon_x, \epsilon_y = \frac{4 \text{ mm mrad}}{\beta \gamma}$$
 $\sigma_i = \sqrt{\epsilon_i \beta_i}$ beta function
 $\beta_x = 30 \text{ mm}$ $\sigma_x = 3.6 \,\mu\text{m}$
 $\beta_y = 7 \text{ mm}$ $\sigma_y = 1.7 \,\mu\text{m}$

• Beam size is determined by emittance

30

• Beam size is determined by emittance

• # of beam particles

 $N_{e^-} = 10 \,\mathrm{nC}$ per bunch $N_{\mu^+} = 3.6 \,\mathrm{nC} \rightarrow 1.3 \,\mathrm{nC}$ per bunch due to decay

Current status of SUSY search

Typically, slepton w/ mass $m_{\tilde{l}} \lesssim 700 \,\text{GeV}$ is excluded.

SUSY search and muon g-2

[ATL-PHYS-PUB-2022-013]

Ultra-cold muons

1. Pions are stopped at tungsten foils and decay into muons.

pion transportation to the target: 50%

2. Muons are transported into the aerogel target and form muoniums.

```
muonium formation: 52 %
```

3. Neutral muoniums become thermalized w/ $E_K \sim 25 \text{ meV}$ and thermally diffused from the target. \rightarrow ionized by laser muonium emission: 60 % & decay loss: 60 % laser ionization: 73%

repeat step 2 and 3 twice: 1st target size ~ 10m, 2nd target ~ O(1) cm

50% at second time because of a thin target

 $\therefore N_{\mu^+}/N_{\pi^+} \simeq 0.5 \times 0.52 \times 0.73 \times 0.6 \times 0.6 \times 0.5 \simeq 3.4 \%$

Estimation of N_{μ^+}

These operations are repeated at every 20 ms.

Initial # of ultra-cold muons = $7.2 \text{ nC} \times 40 \text{ bunch}/(20 \text{ ms}) = 9.0 \times 10^{13}/\text{s}$

acceleration

→ # of ultra-cold muons = $3.6 \text{ nC} \times 40 \text{ bunch}/(20 \text{ ms}) = 4.5 \times 10^{13}/\text{s}$

Beam in main ring

$$\mathscr{L} = \frac{N_{\text{beam1}} N_{\text{beam2}}}{4\pi \sigma_x \sigma_y} f_{\text{rep}}$$

Collision frequency (per detector)

Thanks to ultra-cold muon, low emittance is realized!

Without cooling, the normalized emittance is $\sim 10^3 \pi \,\mathrm{mm\,mrad}$

Cross section

$$d\sigma = \frac{d\cos\theta}{32\pi} \frac{\beta}{s} |M_{\rm RR}|^2 \frac{(1+P_{\mu 1})(1+P_{\mu 2})}{4}, \quad 0 \le \cos\theta \le 1,$$
$$M_{\rm RR} = -\frac{g_2^2}{2} \cdot \frac{4\sqrt{x_A}(1+2x_A-2x_3)}{(1+2x_A-2x_3)^2 - \beta^2\cos^2\theta},$$

$$x_A = \frac{m_{\chi}^2}{s}, \quad x_3 = \frac{m_{\tilde{\mu}}^2}{s}, \quad \beta = \sqrt{1 - 4x_3}.$$

$$\begin{split} \sigma = & \frac{g_2^4}{64\pi} \frac{1}{s} \left[\frac{\beta x_A}{x_A + (x_A - x_3)^2} + \frac{2x_A}{1 + 2x_A - 2x_3} \log \frac{1 + 2x_A - 2x_3 + \beta}{1 + 2x_A - 2x_3 - \beta} \right] \\ & \times \frac{(1 + P_{\mu 1})(1 + P_{\mu 2})}{4}. \end{split}$$

 $ilde{\mu}^+$

 μ^+

 $ilde{\mu}^+$

Cross section

$$d\sigma = \frac{d\cos\theta}{32\pi} \frac{(1+x_3-x_4)\beta}{s} |M_{\rm LR}|^2 \frac{(1-P_{e^-})(1+P_{\mu^+})}{4}, \quad -1 \le \cos\theta \le 1,$$

$$M_{\rm LR} = -\frac{g_2^2}{2} \cdot \frac{(1+x_3-x_4)\beta\sin\theta}{1+2x_A-x_3-x_4-(1+x_3-x_4)\beta\cos\theta},$$

$$x_A = \frac{m_{\chi}^2}{s}, \quad x_3 = \frac{m_{\tilde{e}}^2}{s}, \quad x_4 = \frac{m_{\tilde{\mu}}^2}{s}, \quad \beta = \frac{\sqrt{1 - 2x_3 - 2x_4 + (x_3 - x_4)^2}}{1 + x_3 - x_4}$$

Comparison with ILC

• μ **TRISTAN**: μ^+e^- collider

$$\sqrt{s} = 346 \,\text{GeV}$$
 $\mathscr{L}_{\mu^+ e^-} = 4.6 \times 10^{33} \,\text{cm}^{-2} \text{s}^{-1}$

main ring: 3km circumference

booster ring: 2km LINAC x2 + R=1km arc

construction cost: 5000 billion yen? (with large uncertainty)

(1 dollar ~130 yen)

• ILC: e^+e^- collider

$$\sqrt{s} = 250 \,\text{GeV}$$
 $\mathscr{L} = 1.35 \times 10^{34} \,\text{cm}^{-2} \text{s}^{-1}$

length: 20km

construction cost: 7300-8000 billion yen

FCC-ee

[slide by Frank Zimmermann]

FCC-ee collider parameters					
parameter	Z	ww	H (ZH)	ttbar	
beam energy [GeV]	45	80	120	182.5	
beam current [mA]	1390	147	29	5.4	
no. bunches/beam	16640	2000	393	48	
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3	
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21	
total RF voltage [GV]	0.1	0.44	2.0	10.9	
long. damping time [turns]	1281	235	70	20	
horizontal beta* [m]	0.15	0.2	0.3	1	
vertical beta* [mm]	0.8	1	1	1.6	
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46	
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9	
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5	
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	230	28	8.5	1.55	
beam lifetime rad Bhabha / BS [min]	68 / >200	49 / >1000	38 / 18	40 / 18	

Four fermi measurement at ILC

[1908.11299]

\sqrt{s}	Λ_{LL}	Λ_{RR}	Λ_{VV}	Λ_{AA}
universal Λ 's				
ILC250	108	106	161	139
ILC500	189	185	280	240
ILC1000	323	314	478	403
$e^+e^- \to e^+e^-$				
ILC250	71	70	118	71
ILC500	114	132	214	135
ILC1000	236	232	376	231
$e^+e^- \to \mu^+\mu^-$				
ILC250	80	79	117	104
ILC500	134	133	198	177
ILC1000	224	222	332	296
$e^+e^- \to \tau^+\tau^-$				
ILC250	72	72	109	97
ILC500	127	126	190	168
ILC1000	215	214	321	286
$e^+e^- ightarrow b\overline{b}$				
ILC250	78	73	103	106
ILC500	134	124	175	178
ILC1000	226	205	292	296
$e^+e^- \to c\overline{c}$				
ILC250	51	$\overline{52}$	75	68
ILC500	90	90	130	117
ILC1000	153	151	220	199

Note: They use a different convention: $\frac{4\pi}{\Lambda^2}(\bar{L}\gamma_{\mu}L)(\bar{L}\gamma^{\mu}L)$

[TeV]

Higgs coupling measurement at ILC

coupling	$2 \text{ ab}^{-1} \text{ at } 250$	$+ 4 \text{ ab}^{-1} \text{ at } 500$	$+8 \text{ ab}^{-1} \text{ at } 1000$	[1908.11299
hZZ	$0.35 \ / \ 0.38$	0.20 / 0.20	0.16 / 0.16	_
hWW	$0.35 \ / \ 0.38$	0.20 / 0.20	$0.16 \ / \ 0.16$	
hbb	$0.79 \ / \ 0.80$	$0.43 \ / 0.43$	$0.31 \ / \ 0.31$	
h au au	$0.94 \ / \ 0.95$	$0.63 \ / \ 0.64$	$0.52 \ / \ 0.52$	
hgg	1.6 / 1.6	$0.92 \ / \ 0.92$	$0.59 \ / \ 0.59$	
hcc	1.7 / 1.8	$1.1 \ / \ 1.1$	$0.72 \ / \ 0.72$	
$h\gamma\gamma$	1.0 / 1.1	$0.95 \ / \ 0.97$	$0.88 \ / \ 0.89$	
$h\gamma Z$	8.5 / 8.9	$6.4 \ / \ 6.5$	$6.3 \ / \ 6.4$	
$h\mu\mu$	4.0 / 4.0	3.8 / 3.8	3.4 / 3.4	
htt		6.3	1.6	
hhh		27	10	
Γ_{tot}	1.3 / 1.3	0.70 / 0.70	$0.50 \ / \ 0.50$	- [%]

Table 8: Projected uncertainties in the Higgs boson couplings for the ILC250, ILC500, and ILC1000, with precision LHC input. All values are given in percent (%). The two values in each field are for fits with and without Giga-Z running. Both values are computed under the assumption of no invisible or untagged Higgs boson decays.

Magnet

Dipole magnet with the magnetic field of 10T

→ Main ring 3km for
$$(E_{\mu^+}, E_{e^-}) = (1 \text{ TeV}, 30 \text{ GeV})$$

9km for $(E_{\mu^+}, E_{e^-}) = (3 \text{ TeV}, 50 \text{ GeV})$

cf. High-luminosity LHC: 11T

If dipole magnet with the magnetic field of 16T is possible,

Main ring 6km for
$$(E_{\mu^+}, E_{e^-}) = (3 \text{ TeV}, 50 \text{ GeV})$$

W boson mass

• ILC (and LEP):

W boson mass

• μ TRISTAN

& hadronic decay $W \to q \bar{q}$

In ILC 250 study, $\Delta M_W \simeq 3.7 \,\text{MeV}$, which is dominated by systematic uncertainty (particularly hodronization). [1310.6708]

We expect a similar precision at μ TRISTAN.

Cf.) CDF II result: $M_W = 80,433.5 \pm 9.4 \,\text{MeV}$

Design of μ TRISTAN

$$\mathscr{L} = \frac{N_{\text{beam1}} N_{\text{beam2}}}{4\pi \sigma_x \sigma_y} f_{\text{rep}}$$

 $f_{\rm rep}^{(\mu^+ e^-)} = 3.0 \times 10^8 \,\mathrm{m \, s^{-1}}/(3 \,\mathrm{km}) \times 40 = 4 \,\mathrm{MHz}$

 $f_{\rm rep}^{(\mu^+\mu^+)} = 3.0 \times 10^8 \,\mathrm{m \, s^{-1}}/(3 \,\mathrm{km}) \times 20 = 2 \,\mathrm{MHz}$

$$\sigma_x = 3.6 \,\mu \text{m}$$
 $\sigma_y = 1.7 \,\mu \text{m}$ $f = 10^{-15}, a = 10^{-18}, p = 10^{-12}$

 $N_{e^-} = 10 \,\mathrm{nC}$ per bunch $N_{\mu^+} = 3.6 \,\mathrm{nC} \rightarrow 1.3 \,\mathrm{nC}$ per bunch due to decay

Our estimate:

(10 years running w/ 70 % duty factor)