

# Hadronic Physics up to 100 TeV

Michele Selvaggi (CERN)

LFC 2024 - Sissa Trieste

What we cannot deliver:

- explore all new physics directions/mass couplings scale
- guarantee discovery

What we can deliver:

- precision
- sensitivity to new as many as possible scenarios of new physics
  - clear yes/no answers to concrete scenarios

#### relatively democratic initial states, strong and electro-weak force

#### high center of mass, thanks to ~ small synchrotron power loss $(m_e/m_p)^4$ $\circ$ caveat: at 100 TeV it becomes significant!

• high luminosity up to high energy

#### Cons:

Pros:

- large backgrounds compared to lepton machines ( $\alpha_{S} > \alpha_{EM,W}$ ), from
  - high Q2 physics (di-jet, ttbar ...)

High energy hadron machines

- "simultaneous" p-p collision (pile-up)
  - Discovery machines for heavy new states
  - Also suited for precision (thanks to high rates)



#### p [TeV/c ] = 0.3 B [T ] R [ km ]



#### Variants



Main challenge: high field superconducting > 14 T magnets , high PU

#### Cross section scaling

How does the rate of a given process (e.g. single Higgs production) scale from 14 TeV to 100 TeV

$$\frac{\text{cross-section }(\sqrt{s} = 100 \text{ TeV})}{\text{cross-section }(\sqrt{s} = 14 \text{ TeV})} \approx L_1 / L_2 \approx (s_2 / s_1)^a \approx (100 / 14)^{2a}$$



|                | σ(100)/σ(14) |
|----------------|--------------|
| ggH            | 15           |
| НН             | 40           |
| ttH            | 55           |
| H (p⊤ > I TeV) | 400          |

Very large rate increase by increasing center of mass energy

NB: this improvement only comes from the cross-section (neglects integrated luminosity)

# High energy hadron machines



- Total pp cross-section and Minimum bias multiplicity show a modest increase from 14 TeV to 100 TeV
  - $\rightarrow$  Levels of pile-up will scale basically as the instantaneous luminosity.
- Cross-section for relevant processes shows a significant increase.
  - $\rightarrow$  interesting physics sticks out more !

Rate of increase from 14 TeV to 100 TeV:

- ggH x15
- HH x40
- ttH x55

reduction of x10-20 statistical uncertainties

#### Hadron Machines specs and detector requirements

#### lumi & pile-up

| parameter                             | unit                              | LHC  | HL-LHC | HE-LHC | FCC-hh |
|---------------------------------------|-----------------------------------|------|--------|--------|--------|
| $E_{cm}$                              | TeV                               | 14   | 14     | 27     | 100    |
| circumference                         | km                                | 26.7 | 26.7   | 26.7   | 97.8   |
| peak $\mathcal{L} \times 10^{34}$     | $\mathrm{cm}^{-2}\mathrm{s}^{-1}$ | 1    | 5      | 25     | 30     |
| bunch spacing                         | ns                                | 25   | 25     | 25     | 25     |
| number of bunches                     |                                   | 2808 | 2808   | 2808   | 10600  |
| goal $\int \mathcal{L}$               | ab <sup>-1</sup>                  | 0.3  | 3      | 10     | 30     |
| $\sigma_{inel}$                       | mbarn                             | 85   | 85     | 91     | 108    |
| $\sigma_{tot}$                        | mbarn                             | 111  | 111    | 126    | 153    |
| BC rate                               | MHz                               | 31.6 | 31.6   | 31.6   | 32.5   |
| peak pp collision rate                | GHz                               | 0.85 | 4.25   | 22.8   | 32.4   |
| peak av. PU events/BC                 |                                   | 27   | 135    | 721    | 997    |
| rms luminous region $\sigma_z$        | mm                                | 45   | 57     | 57     | 49     |
| line PU density                       | $\rm mm^{-1}$                     | 0.2  | 0.9    | 5      | 8.1    |
| time PU density                       | ps <sup>-1</sup>                  | 0.1  | 0.28   | 1.51   | 2.43   |
| $dN_{ch}/d\eta _{\eta=0}$             |                                   | 7    | 7      | 8      | 9.6    |
| charged tracks per collision $N_{ch}$ |                                   | 95   | 95     | 108    | 130    |
| Rate of charged tracks                | GHz                               | 76   | 380    | 2500   | 4160   |
| $\langle p_T \rangle$                 | GeV/c                             | 0.6  | 0.6    | 0.7    | 0.76   |

→ x6 HL-LHC

LHC: 30 PU events/bc HL-LHC: 140 PU events/bc FCC-hh: 1000 PU events/bc

#### Physics at threshold

#### SM Physics is more forward @100TeV

 If we want to maintain high efficiency in states produced at threshold need large rapidity (with tracking) and low p<sub>T</sub> coverage

# $\rightarrow$ highly challenging levels of radiation at large rapidities







#### Boosted topologies at multi-TeV energies

#### The boosted regime:

 $\rightarrow$  measure leptons, jets, photons, muons originating ~ 40-50 TeV resonances

Tracking: 
$$\frac{\sigma(p)}{p} \approx \frac{p\sigma_x}{BL^2}$$
 Calorimeters:  $\frac{\sigma(E)}{E} \approx \frac{A}{\sqrt{E}} \bigoplus B$ 

- Tracking target : σ / p = 20% @10 TeV
- Muons target: **σ** / **p** = 10% @20 TeV
- Calorimeters target: containment of pT = 20 TeV jets



### Boosted topologies at multi-TeV energies

#### min. distance to resolve two



ex for top:

 $\begin{array}{rcl} p_{T} = & 200 \; \text{GeV} & \rightarrow & \text{R} \sim 2 \\ p_{T} = & 1 \; \text{TeV} & \rightarrow & \text{R} \sim 0.4 \\ \textbf{p}_{T} = & \textbf{10} \; \text{TeV} & \rightarrow & \text{R} \sim 0.05 \end{array}$ 

- At 10 TeV whole jet core within 1 calo cell
  - neutrals possibly un-resolvable
    - B field "helps" with charged
  - PF reconstruction will be severely affected
    - Total jet energy OK, calo does good job
    - reed to be studied and rethought for
- Naive approach:
  - use calo for energy measurement
  - tracking for substructure identification

#### in CMS:

 $\begin{array}{rcl} \mbox{Tracking} & \rightarrow & \Delta R \sim 0.002 \\ \mbox{ECAL} & \rightarrow & \Delta R \sim 0.02 \\ \mbox{HCAL} & \rightarrow & \Delta R \sim 0.1 \end{array}$ 

# High $p_T$ flavor tagging

- The boosted regime:
  - → measure b-jets, taus from multi-TeV resonances
- Long-lived particles live longer:
  - ex: 5 TeV b-Hadron travels 50 cm before decaying 5 TeV tau lepton travels 10 cm before decaying
  - → extend pixel detector further?
    - useful also for exotic topologies (disappearing tracks and generic BSM Long-lived charged particles)
    - number of channels over large area can get too high
  - $\rightarrow$  re-think reconstruction algorithms:
    - hard to reconstruct displaced vertices
    - exploit hit multiplicity discontinuity







Only 71% 5 TeV b-hadrons decay < 5th layer.

• displaced vertices





### Higgs at 100 TeV vs HL-LHC and FCC-ee

- 100 TeV provides unique and complementary measurements to ee colliders:
  - Higgs self-coupling
  - top Yukawa
  - Higgs  $\rightarrow$  invisible
  - rare decays (BR(μμ), BR(Ζγ), ratios, ..) measurements will be statistically limited at FCC-ee

|                 |                                          |                                          | HL-LHC             | FCC-ee |
|-----------------|------------------------------------------|------------------------------------------|--------------------|--------|
|                 |                                          | δГн / Гн (%)                             | SM                 | 1.3    |
|                 |                                          | δg <sub>HZZ</sub> / g <sub>HZZ</sub> (%) | 1.5                | 0.17   |
|                 |                                          | δднww / днww (%)                         | 1.7                | 0.43   |
|                 |                                          | δg <sub>Hbb</sub> / g <sub>Hbb</sub> (%) | 3.7                | 0.61   |
|                 |                                          | δg <sub>Hcc</sub> / g <sub>Hcc</sub> (%) | ~70                | 1.21   |
|                 |                                          | δg <sub>Hgg</sub> / g <sub>Hgg</sub> (%) | 2.5 (gg->H)        | 1.01   |
|                 |                                          | δg <sub>Hττ</sub> / g <sub>Hττ</sub> (%) | 1.9                | 0.74   |
| Need to improve | δg <sub>Hµµ</sub> / g <sub>Hµµ</sub> (%) | 4.3                                      | 9.0                |        |
|                 |                                          | δg <sub>Hγγ</sub> / g <sub>Hγγ</sub> (%) | 1.8                | 3.9    |
|                 |                                          | δg <sub>Htt</sub> / g <sub>Htt</sub> (%) | 3.4                | -      |
|                 | 1                                        | δg <sub>HZγ</sub> / g <sub>HZγ</sub> (%) | 9.8                | _      |
|                 | C                                        | δдннн / дннн (%)                         | 50                 | 40     |
|                 |                                          | BR <sub>exo</sub> (95%CL)                | $BR_{inv} < 2.5\%$ | < 1%   |

Large rates for rare modes and HH production at FCC-hh

 $\rightarrow$  complementary to e<sup>+</sup>e<sup>-</sup>

#### Higgs complementarity with lepton machines

At pp colliders we can only measure:

 $\sigma_{\text{prod}} BR(i) = \sigma_{\text{prod}} \Gamma_i / \Gamma_H$ 

 $\rightarrow$  we do not know the total width.

In order to perform global fits, we have to make model-dependent assumptions

Instead, by performing measurements of ratios of BRs at hadron colliders:

BR(H
$$\rightarrow$$
XX) / BR(H $\rightarrow$ ZZ)  $\approx$  gx<sup>2</sup> / gz<sup>2</sup>  
from e<sup>+</sup>e<sup>-</sup>

We can "convert" relative measurements into absolute via  $g_Z$  thanks to  $e^+e^-$  measurement

 $\rightarrow$  synergy between lepton and hadron colliders

## Higgs production in hadron machines



|                         | σ(13 TeV) | σ(100 TeV) | σ(100)/σ(13) |
|-------------------------|-----------|------------|--------------|
| ggH (N <sup>3</sup> LO) | 49 pb     | 803 pb     | 16           |
| VBF (N <sup>2</sup> LO) | 3.8 pb    | 69 pb      | 16           |
| VH (N <sup>2</sup> LO)  | 2.3 pb    | 27 рЬ      | 11           |
| ttH (N <sup>2</sup> LO) | 0.5 pb    | 34 pb      | 55           |
| HH (NNLO)               | 40 fb     | 1.2 pb     | 30           |





#### 30M Higgs pairs

Expected improvement at FCC-hh:

- 20 billion Higgses produced at FCC-hh
- factor 10-50 in cross sections (and Lx10)
- reduction of a factor 10-20 in statistical uncertainties

#### Large statistics will allow:

- + for % level precision in statistically limited rare channels  $(\mu\mu, Z\gamma)$
- in systematics limited channel, to isolate cleaner samples in regions (e.g. @large Higgs pt) with :
  - higher S/B
  - smaller (relative) impact of systematic uncertainties

| $N_{100} = \sigma_{100 \text{ Te}}$   | v × 20 ab <sup>-1</sup> |
|---------------------------------------|-------------------------|
| $N_8 = \sigma_{8 \text{ TeV}} \times$ | 20 fb <sup>-1</sup>     |
| $N_{14} = \sigma_{14 \text{ TeV}}$    | × 3 ab <sup>-1</sup>    |

|             | $N_{100}$          | $N_{100}/N_8$   | $N_{100}/N_{14}$ |
|-------------|--------------------|-----------------|------------------|
| $gg \to H$  | $16 \times 10^{9}$ | $4 \times 10^4$ | 110              |
| VBF         | $1.6 \times 10^9$  | $5 \times 10^4$ | 120              |
| WH          | $3.2 \times 10^8$  | $2 \times 10^4$ | 65               |
| ZH          | $2.2 \times 10^8$  | $3 \times 10^4$ | 85               |
| $t\bar{t}H$ | $7.6 	imes 10^8$   | $3 \times 10^5$ | 420              |
|             | 7.0 × 10           | 3 × 10          | 420              |
|             |                    |                 |                  |
|             |                    | 1               |                  |
|             | _                  |                 |                  |

Factor: 1/100 1/10 reduction in stat. unc.

### Higgs rare decays

- study sensitivity as a function of minimum  $p_T(H)$ requirement in the  $\gamma\gamma$ , ZZ(4I),  $\mu\mu$  and Z(II) $\gamma$ channels
- low pT(H): large statistics and high syst. unc.
- large pT(H): small statistics and small syst. unc.
- O(1-2%) precision on BR achievable up to very high pT (means 0.5-1% on the couplings)

(%) ή / ή φ

10

10

100 200 300 400 500 600 700

800 900 1000

p<sup>H</sup><sub>T min</sub> [GeV]

- 1% lumi + theory uncertainty
- p<sub>T</sub> dependent object efficiency:
  - $\delta\epsilon(e/\gamma) = 0.5 (1)\%$  at  $p_T \rightarrow \infty$
  - $\delta\epsilon(\mu) = 0.25 \ (0.5)\%$  at  $p_T \rightarrow \infty$



10-

50

100 150 200 250 300 350

400 450 500

p<sup>H</sup><sub>T min</sub> [GeV]





# BR ( $\mu\mu$ , $\gamma\gamma$ ,Z $\gamma$ ) / BR(H $\rightarrow$ ZZ)

- measure ratios of BRs to cancel correlated sources of systematics:
  - luminosity
  - object efficiencies
  - production cross-section (theory)
- Becomes absolute precision measurement in particular if combined with H→ZZ measurement from e<sup>+</sup>e<sup>-</sup> ( at 0.2%)



#### 1% precision



#### Top Yukawa , $H \rightarrow bb$ boosted

- production ratio  $\sigma(ttH)/\sigma(ttZ) \approx y_t^2 y_b^2/g_{ttZ}^2$
- measure  $\sigma(ttH)/\sigma(ttZ)$  in  $H/Z \rightarrow bb$  mode in the boosted regime, in the semi-leptonic channel
- perform simultaneous fit of double Z and H peak
- · (lumi, scales, pdfs, efficiency) uncertainties cancel out in ratio
- \* assuming  $g_{ttZ}$  and  $\kappa_b$  known to 1% (from FCC-ee),





#### complement using Ηττ

24





18

#### $\rightarrow$ measure $y_t$ to 1%

#### New possible studies



- Exploring new ideas to reduce dependence on detector assumptions and systematics:
  - H $\rightarrow$ WW, bb, cc,  $\tau\tau$
  - use ratios/double ratios
    - focus on boosted regime/similar production modes
      - For rate, object, lumi (partial or total) cancellations
  - study tradeoff between boost (syst) and statistics



# Higgs self-coupling



• x400 in event yields and x20 in precision







Mastrapasqua, Taliercio, Stapf



new studies on-going !

exploring more detctor/sqrt(s) variations



0.7 1.0 1.3 1.5 1.7 2.0 2.2 2.4 2.6 2.8 3.0



@68% CL

bbyy

bbττ

bbbb

comb.

• 3.5-8% for SM (3% stat. only)

3.8

9.8

22.3

3.4

**Expected** precision:

scenario I scenario II scenario III

10.0

13.8

32.0

7.8

-60 stat+sys

0.0 0.4

5.9

12.2

27.1

5.1

• 10-20% for  $\lambda_3 = 1.5^* \lambda_3^{SM}$ 



#### HHVV coupling



With  $c_V$  from FCC-ee,  $\delta c_{2V} < 1\%$ 

### Summary Higgs measurements

|                                          | HL-LHC                   | FCC-ee         | FCC-hh                     |
|------------------------------------------|--------------------------|----------------|----------------------------|
| δГн / Гн (%)                             | SM                       | 1.3            | tbd                        |
| δg <sub>HZZ</sub> / g <sub>HZZ</sub> (%) | 1.5                      | 0.17           | tbd                        |
| δgнww / gнww (%)                         | 1.7                      | 0.43           | tbd                        |
| δg <sub>Hbb</sub> / g <sub>Hbb</sub> (%) | 3.7                      | 0.61           | tbd                        |
| δg <sub>Hcc</sub> / g <sub>Hcc</sub> (%) | ~70                      | 1.21           | tbd                        |
| δg <sub>Hgg</sub> / g <sub>Hgg</sub> (%) | 2.5 (gg->H)              | 1.01           | tbd                        |
| δg <sub>Ηττ</sub> / g <sub>Ηττ</sub> (%) | 1.9                      | 0.74           | tbd                        |
| δg <sub>Hµµ</sub> / g <sub>Hµµ</sub> (%) | 4.3                      | 9.0            | 0.65 (*)                   |
| δg <sub>Hγγ</sub> / g <sub>Hγγ</sub> (%) | 1.8                      | 3.9            | <b>0.4</b> (*)             |
| δg <sub>нtt</sub> / g <sub>нtt</sub> (%) | 3.4                      | —              | 0.95 (**)                  |
| δg <sub>HZγ</sub> / g <sub>HZγ</sub> (%) | 9.8                      | —              | <b>0.91</b> (*)            |
| δgннн / gннн (%)                         | 50                       | ~30 (indirect) | 5                          |
| BR <sub>exo</sub> (95%CL)                | BR <sub>inv</sub> < 2.5% | < 1%           | BR <sub>inv</sub> < 0.025% |

\* From BR ratios wrt B(H $\rightarrow$ 4l) @ FCC-ee

\*\* From pp $\rightarrow$ ttH / pp $\rightarrow$ ttZ, using B(H $\rightarrow$ bb) and ttZ EW coupling @ FCC-ee

#### WIMP dark matter - disappearing track analysis





observed relic density

- M = I TeV Higgsino can be discovered
- M = 3 TeV Wino can be discovered

# The energy frontier



<u>Challenges:</u> multi-TeV collimated top, W, T highly collimated. Tracking is the key highly segmented calorimetry

### Conclusion



- high energy proton colliders are very "inclusive" facilities for physics
  - probes many different initial states, both for both EWK, colored particles
  - measurements at threshold and beyond thanks to large rates, high mass exploration
- key physics benchmarks channels studied set the requirements for detector design
  - physics reach
  - detector design and technologies, R&D
  - optimisation of the machine layout
  - reconstruction , object identification, PU removal
  - o software, AI ...
- FCC-hh is an order of magnitude more complex than HL-LHC
  - main challenges identified, most likely will be overcomed given timescale
    - radiation hardness, amount of data real challenge
    - it will be the next generation hadron machine, BUT R&D should not stop after HL-LHC
      - synergetic with other proposed future facilities

#### Organisation



- General group: fcc-ped-hh-espp25
  - $\rightarrow$  main group, general monthly meetings announcements

Coordinators: Christophe Grojean (DESY/CERN), Michelangelo Mangano, Matthew McCullough, Michele Selvaggi (CERN)

• Physics analysis group: fcc-ped-hh-physicsperformance-espp25

 $\rightarrow$  physics analysis focussed monthly meetings (will be announced soon)

Coordinators:

Birgit Stapf (CERN), Angela Taliercio (NorthWestern), Sara Williams (Cambridge)

#### Useful references



Physics at the FCC-hh CERN-2017-003-M

FCC-hh CDR CERN-ACC-2018-0058

FCC-hh Yellow Report (extended CDR) CERN-2022-002

Physics potential of a low-energy FCC-hh CERN-FCC-PHYS-2019-0001

Higgs Physics Potential of FCC-hh Standalone CERN-FCC-PHYS-2019-0002

FCC-hh Detector Requirements CERN Seminar



#### High energy hadron machines

To compute reach, we assume we need to observe given number of events:

MSTW2008NLO 10<sup>8</sup> s = 14, 40, 60, 80, 100 Te N =  $\sigma \mathscr{L}$ 10 aā 10 dimensional analysis 10  $L \sim I/\tau^{a}$ 10 (qa) 10<sup>4</sup>  $\sigma \sim L_{parton}(\tau) \cdot \sigma_{partonic}$ 100 10 80 60 <sup>2</sup> × 10<sup>°</sup> 10<sup>°</sup> × 10<sup>°</sup> 10<sup>°</sup> × 10<sup>°</sup> I/ M<sup>2</sup> 14  $1/\tau^{a}$ assumes mostly 10  $\tau = x_1 x_2 = M^2 / s$ produce at threshold 10 10 10 10 10 10 0.1 1 M<sub>x</sub> (TeV)  $\mathscr{L}$  : integrated luminosity L<sub>parton</sub> : parton luminosity a≈2 a≈6

LHC parton luminosity distributions

10<sup>10</sup>

#### Mass reach scaling

How does the reach for observing a a new state of mass M (e.g BSM Higgs,  $\dots$ ) scale from 14 TeV to 100 TeV ?

Assume we need the same number of events at 14 TeV and 100 TeV to claim discovery:

# events ( $\sqrt{s_2} = 100 \text{ TeV}$ )  $\approx$  # events ( $\sqrt{s_1} = 14 \text{ TeV}$ )

As expected, mass reach scales linearly with  $\sqrt{s}$ 

# High energy hadron machines

- Ultimate discovery machine
  - directly probe new physics up to unprecendented scale
  - discover/exclude:

- heavy resonances "strong"
$$m(q^*) \approx 50 \text{ TeV},$$
  
"weak" $m(Z') \approx 40 \text{TeV},$   
m(gluino) ≈ 15 TeV,  
m(stop). $\pi(Z') \approx 40 \text{TeV},$   
 $\pi(Stop). $\pi(Z') \approx 40 \text{TeV},$   
 $\pi(Stop). $\pi(Z') \approx 10 \text{TeV},$   
Wino/Higgsino Dark  
matter (1-3 TeV)$$ 

#### • Precision machine (Higgs)

- probe Higgs self-coupling to few % level
- %-level precision for 3rd generation (top yukawa)
  - and 2nd generation (µµ, cc)
- exploit complementarity with e<sup>+</sup>e<sup>-</sup> by probing high dim.operators (EFT) in extreme kinematic regimes (boosted)

#### Direct search vs HH

- Strong 1st order EWPT needed to explain large observed baryon asymmetry in our universe
- Can be achieved with extension of SM + singlet



# Recap, how we proceeded for the CDR



- Baseline detector concept in Delphes
- Physics benchmarks
  - Higgs and SM
  - BSM

. . .

- Refined detector requirements
- Implementation on detector concept in full simulation
  - Study performance in full sim
- Improve detector parameterisation in Delphes



### A detector concept that does the job ...





# Guiding principles for FCC-hh detector



- Guiding principles were machine constraints and physics requirements
- This generic detector serves as a starting point for:
  - benchmarking physics reach of the machine
  - identify: challenges of building such an experiment
  - topics where R&D needed
- Most likely, this is not "THE OPTIMAL" detector.
- Maybe the optimal route will be to have several detectors optimized for specific signatures (low? vs high lumi)
- Also, expected improvements in technology may lead to more ambitious and less-conventional approaches of detector concepts in the future
  - most of the challenges common to any high energy/high luminosity project.

#### Collider options



| name                     | F12LL | F12HL | F12PU | F14 | F17 | F20 |
|--------------------------|-------|-------|-------|-----|-----|-----|
| √s (TeV)                 | 72    | 72    | 72    | 84  | 102 | 120 |
| current (A)              | 0.5   | 1.12  | 1.12  | 0.5 | 0.5 | 0.2 |
| PU                       | 600   | 3000  | 1000  | 600 | 700 | 150 |
| SR power (MW)<br>2 beams | 1.3   | 2.9   | 2.9   | 2.4 | 5.2 | 4.0 |
| Lumi/yr (ab-1)           | 1     | 2     | 1.3   | 0.9 | 0.9 | 0.4 |

Limiting factor: 5MW synchrotron power ~  $\sqrt{s^4}$ 

# Experimental challenges for jets (at threshold)

- relative impact of PU is large on:
  - jet energy resolution and scale
  - HF-tagging (b/c-tagging)
- PU subtraction techniques
  - charged hadron subtraction
    - timing information (5-10 ps resolution)
      - forward!
  - Residual:
    - area-subtraction
    - PUPPI reconstruction
    - advanced graph based-ML





1912.09962

### Color Singlets (W/Z/H)

[Pierini]



- **Gluon/quark** jet looks the same at 50 GeV and 5 TeV (**QCD** is ~ scale invariant)
- Color Singlets look like taus (do not radiate, a part from occasional QED/EWK shower)
  - high mass, highly isolated, highly collimated tracks

#### Boosted Color Singlet ID

[Pierini]



Loss in performance, but no show stoppers

Very simple heuristic based , can probably do much better with today's techniques

### **Boosted Colored Resonances**



- Multi TeV top radiates FSR at a typical scale angular scale ~ m / pT (deadcone)
- Large cone FSR can spoil mass by adding  $\Delta m \sim m_{top}$  even for 1 GeV emission
  - $\circ \rightarrow$  use shrinking cone algo by reclustering with R ~ 4m/pT
  - use tracking for substructure

#### The deadcone effect for massive colored res.

FSR in soft and collinear limit :

$$\frac{1}{\sigma} \frac{\mathrm{d}^2 \sigma}{\mathrm{d}z \,\mathrm{d}\theta^2} \simeq \frac{\alpha_S}{\pi} C_F \frac{1}{z} \frac{\theta^2}{(\theta^2 + \theta_D^2)^2}$$

- effect can be observed at HL-LHC
- rather than treated as a nuisance can be exploited for top tagging at multi TeV energies



Maltoni, MS, Thaler [1606.03449]





for the top can be pretty large angle



#### **Electroweak showers**

3000 2p\_1(W) / H\_1 8.0 8.0 8.0 2500 WZ+j 0.7 2000 0.6 0.5 1500 0.4 1000 0.3 0.2 500 0.1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 ∆R(W,Z)

2→2 + PYTHIA weak FSR shower



#### Chen, Han and Tweedie [1611.00788]



- EWK shower become sizeable log-enhanced at multi-TeV energies
  - $\circ \quad j \to j W \text{ can fake a top jet}$
- can and have to be included and studied in multi-TeV jet tagging
- Neutrino showers?

42

## Summary

- Circular ee (FCC-ee/CEPC)
  - small boost, small background, well known initial state
  - Huge statistics 10<sup>12</sup> jets of any flavor (including tau's)
    - study jets (Q vs G), HF jets and calibrate taggers in data
- Linear ee machines (ILC/CLIC)
  - Low to moderate boost/backgrounds
- High energy lepton (*µ*-Col) and hadron collider (FCC-hh)
  - at threshold:
    - SM Physics is forward, challenging machine backgrounds (PU, BIB)
      - precise tracking/timing
  - Hyper boosted regime ( $p_T > 10 \text{ TeV}$ )
    - calorimeters cannot resolve substructure
    - tracking is key
    - new handles:
      - Isolation for color singlets
      - deadcone radiation

# Higgs invisible

- Measure it from H + X at large  $p_T(H)$
- Fit the ET<sup>miss</sup> spectrum
- Estimate  $Z \rightarrow vv$  from  $Z \rightarrow ee/\mu\mu$  control regions
- Constrain background  $p_T$  spectrum from  $Z\!\to\!\nu\nu$  to the % level using NNLO QCD/EW to relate to measured Z,W and  $\gamma$  spectra
- BR(H→inv) ≈ 2.5 10-4





#### Conclusion



- Many interesting topics to contribute
  - physics reach
  - detector design and technologies, R&D
  - optimisation of the machine layout
  - reconstruction , object identification, PU removal
  - software, AI ...
- FCC-hh is an order of magnitude more complex than HL-LHC
  - radiation hardness, amount of data real challenge
  - it will be the next generation hadron machine, R&D should not stop after HL-LHC
- Subscribe to fcc-ped-hh-espp25 and fcc-ped-hh-physicsperformance-espp25, mailing lists for more info to come:
  - monthly general meeting
  - focused analysis meeting, tutorials