Flavour of New Physics in Dilepton Tails at Hadron Colliders

Lukas Allwicher

Physik-Institut, Universität Zürich

Fundamental Interactions at Future Colliders LFC24 16-20 September 2024 Trieste, Italy

Based (mostly) on: 2207.10714, 2207.10754 with D. Faroughy, F. Jaffredo, O. Sumensari and F. Wilsch

- Semileptonic interactions long-standing probes of the SM and beyond in flavour observables
- In recent years, see *B*-anomalies
- We are still looking for an explanation of the SM flavour puzzle
- (Possibly) separate issue: New Physics flavour problem, how does low-scale (here: TeV) NP couple to the different SM fermions?
- Need to look everywhere, i.e. make use of all data we have \rightarrow use tails of Drell-Yan distributions as additional flavour probes
- Especially relevant where flavour measurements are hard/impossible

Searches at different energy scales

High- p_T searches can probe the same operators directly constrained by flavour-physics experiments (and more) [see also 1609.07138, 1704.09015, 1811.07920, 2003.12421, ...]

Example: charm observables

Compare constraints on semileptonic interactions involving charm quarks:

- D meson decays: $c \to u\ell\ell$
- Drell-Yan: $cu \to \ell \ell$

```
LHC already provides better constraints!
```


[Fuentes-Martín, Greljo, Camalich, Ruiz-Alvarez 2003.12421]

Other examples:

- de Blas, Chala, Santiago 1307.5068
- Angelescu, Faroughy, Sumensari 2002.05684
- Dawson, Giardino, Ismail 1811.12260
- Marzocca, Min, Son 2008.07541

Study the flavour of Drell-Yan tails in generality

Tails of $pp \to \ell \ell$ as flavour probes

- 5 active flavours in the proton
- Drell-Yan at LHC:
 - $pp \to \ell^+_\alpha \ell^-_\beta$
 - $pp \to \ell^+_\alpha \nu_\beta$
- Hadronic cross-section:

$$\sigma(pp \to \ell_{\alpha}\ell_{\beta}) = \mathcal{L}_{ij} \times \hat{\sigma}_{ij}^{\alpha\beta}$$

• $\hat{\sigma}_{ij}^{\alpha\beta} = \hat{\sigma}(q_i \bar{q}_j \to \ell_{\alpha} \ell_{\beta})$ partonic cross-section \to energy-enhanced in the EFT. With 4-fermion operators:

$$\hat{\sigma}_{ij}^{\alpha\beta}\propto\frac{\hat{s}^2}{\Lambda^4}$$

- Heavy flavours suppressed by parton luminosities \mathcal{L}_{ij}
- Energy enhancement can overcome PDF suppression

Form-factor decomposition: $\bar{q}_i q'_i \rightarrow \ell_\alpha \bar{\ell}'_\beta$

General parton-level Drell-Yan amplitude:

$$\begin{split} \mathcal{A}(\bar{q}_{i}q'_{j} \rightarrow \ell_{\alpha}\bar{\ell}'_{\beta}) &= \frac{1}{v^{2}} \sum_{XY} \left\{ \begin{array}{l} \left(\bar{\ell}_{\alpha}\gamma^{\mu}\mathbb{P}_{X}\ell'_{\beta}\right) \left(\bar{q}_{i}\gamma_{\mu}\mathbb{P}_{Y}q'_{j}\right) \left[\mathcal{F}_{V}^{XY,\,qq'}(\hat{s},\hat{t})\right]_{\alpha\beta ij} \\ &+ \left(\bar{\ell}_{\alpha}\mathbb{P}_{X}\ell'_{\beta}\right) \left(\bar{q}_{i}\mathbb{P}_{Y}q'_{j}\right) \left[\mathcal{F}_{S}^{XY,\,qq'}(\hat{s},\hat{t})\right]_{\alpha\beta ij} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell'_{\beta}\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q'_{j}\right) \delta^{XY} \left[\mathcal{F}_{T}^{XY,\,qq'}(\hat{s},\hat{t})\right]_{\alpha\beta ij} \\ &+ \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell'_{\beta}\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q'_{j}\right) \frac{ik_{\nu}}{v} \left[\mathcal{F}_{D_{q}}^{XY,\,qq'}(\hat{s},\hat{t})\right]_{\alpha\beta ij} \\ &+ \left(\bar{\ell}_{\alpha}\sigma^{\mu\nu}\mathbb{P}_{X}\ell'_{\beta}\right) \left(\bar{q}_{i}\gamma_{\mu}\mathbb{P}_{Y}q'_{j}\right) \frac{ik_{\nu}}{v} \left[\mathcal{F}_{D_{\ell}}^{XY,\,qq'}(\hat{s},\hat{t})\right]_{\alpha\beta ij} \right] \end{split}$$

- $X, Y \in L, R, \ \hat{s} = k^2 = (p_\ell + p_{\ell'})^2, \ \hat{t} = (p_\ell p_{q'})^2$
- General parametrisation of tree-level effects invariant under $SU(3)_c \times U(1)_e$
- Captures both local and non-local effects

Local and non-local contributions

$$\mathcal{F}_{I}(\hat{s}, \hat{t}) = \mathcal{F}_{I, \text{Reg}}(\hat{s}, \hat{t}) + \mathcal{F}_{I, \text{Poles}}(\hat{s}, \hat{t})$$

- Analytic function of \hat{s}, \hat{t}
- Describes contact interactions \rightarrow SMEFT
- Expansion for v^2 , $|\hat{s}|$, $|\hat{t}| < \Lambda^2$:

$$\mathcal{F}_{I,\,\mathrm{Reg}}(\hat{s},\hat{t}) \;=\; \sum_{n,m=0}^{\infty} \mathcal{F}_{I\,(n,m)} \, \left(\frac{\hat{s}}{v^2}\right)^n \left(\frac{\hat{t}}{v^2}\right)^m$$

- Isolated simple poles in \hat{s}, \hat{t}
- Non-local effects due to exchange of a mediator (SM and NP)

$$\begin{aligned} \mathcal{F}_{I, \, \text{Poles}}(\hat{s}, \hat{t}) &= \sum_{a} \frac{v^2 \, \mathcal{S}_{I(a)}}{\hat{s} - \Omega_a} \\ &+ \sum_{b} \frac{v^2 \, \mathcal{T}_{I(b)}}{\hat{t} - \Omega_b} - \sum_{c} \frac{v^2 \, \mathcal{U}_{I(c)}}{\hat{s} + \hat{t} + \Omega_c} \end{aligned}$$

$$\Omega_i = m_i^2 - im_i \Gamma_i \qquad \hat{u} = -\hat{s} - \hat{t}$$

Drell-Yan cross-section in SMEFT

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{d,k} \frac{\mathcal{C}_k^{(d)}}{\Lambda^{d-4}} \mathcal{O}_k^{(d)} + \sum_{d,k} \left[\frac{\widetilde{\mathcal{C}}_k^{(d)}}{\Lambda^{d-4}} \widetilde{\mathcal{O}}_k^{(d)} + \text{h.c.} \right]$$

Cross-section up to $\mathcal{O}(\Lambda^{-4})$:

$$\begin{split} \hat{\sigma} &\sim \int [\mathrm{d}\Phi] \left\{ \left| \mathcal{A}_{\mathrm{SM}} \right|^2 + \frac{v^2}{\Lambda^2} \sum_i 2 \operatorname{Re} \left(\mathcal{A}_i^{(6)} \, \mathcal{A}_{\mathrm{SM}}^* \right) \right. \\ &+ \frac{v^4}{\Lambda^4} \bigg[\sum_{ij} 2 \operatorname{Re} \left(\mathcal{A}_i^{(6)} \, \mathcal{A}_j^{(6)\,*} \right) + \sum_i 2 \operatorname{Re} \left(\mathcal{A}_i^{(8)} \, \mathcal{A}_{\mathrm{SM}}^* \right) \bigg] + \ \dots \bigg\} \end{split}$$

- Include $|\mathcal{A}^{(6)}|^2$ contributions: LFV
- Only d = 8 terms interfering with the SM are relevant
- Basis:
 - d = 6: Warsaw [1008.4884]
 - d = 8: Murphy [2005.00059]

High- p_T Tails

A Mathematica package for flavour physics in Drell-Yan tails

with D. Faroughy, F. Jaffredo, O. Sumensari and F. Wilsch arXiv: 2207.10714, 2207.10756 https://highpt.github.io/

HighPT: general features

- Includes (some of) the latest LHC Drell-Yan searches
- Large variety of NP scenarios:
 - SMEFT d = 6, d = 8 (up to $\mathcal{O}(\Lambda^{-4})$)
 - Bosonic mediators: leptoquarks
- Allows to compute:
 - Hadronic cross-sections
 - Event yields \rightarrow bin-by-bin in the exp. searches
 - χ^2 likelihood as function of Wilson coefficients/coupling constants
- Includes a python output routine using WCxf to perform analyses outside Mathematica

 \rightarrow Extract bounds on form-factors/Wilson coefficients/NP couplings

• one search for each leptonic final state

Process	Experiment	Luminosity	Ref.	$x_{ m obs}$	x
$pp \rightarrow \tau \tau$	ATLAS	$139{\rm fb}^{-1}$	2002.12223	$m_T^{\text{tot}}(\tau_h^1, \tau_h^2, \not\!\!\!E_T)$	$m_{\tau\tau}$
$pp \to \mu \mu$	CMS	$140 {\rm fb}^{-1}$	2103.02708	$m_{\mu\mu}$	$m_{\mu\mu}$
$pp \to ee$	CMS	$137{\rm fb}^{-1}$	2103.02708	m_{ee}	m_{ee}
$pp \rightarrow \tau \nu$	ATLAS	$139{\rm fb}^{-1}$	ATLAS-CONF-2021-025	$m_T(\tau_h, \not\!\!\!E_T)$	$p_T(\tau)$
$pp \to \mu\nu$	ATLAS	$139{\rm fb}^{-1}$	1906.05609	$m_T(\mu, \not\!\!\!E_T)$	$p_T(\mu)$
$pp \to e\nu$	ATLAS	$139{\rm fb}^{-1}$	1906.05609	$m_T(e, \not\!\!\!E_T)$	$p_T(e)$
$pp \to \tau \mu$	CMS	$138{\rm fb}^{-1}$	2205.06709	$m_{\tau_h\mu}^{\rm col}$	$m_{ au\mu}$
$pp \to \tau e$	CMS	$138{\rm fb}^{-1}$	2205.06709	$m_{\tau_h e}^{\text{col}}$	$m_{\tau e}$
$pp \to \mu e$	CMS	$138{\rm fb}^{-1}$	2205.06709	$m_{\mu e}$	$m_{\mu e}$

Limits on four-fermion operators: $C_{la}^{(1)}$

Switch on one operator at a time and compute σ up to O(Λ⁻⁴)
Λ = 1 TeV

- Generally worse constraints for heavier quark flavours
- Can still be competitive with flavour (+ probing unconstrained directions such as $bb \rightarrow \tau \tau$)

Limits on Leptoquarks: single couplings

• e.g.
$$S_1 \sim (\bar{\mathbf{3}}, \mathbf{1}, 1/3)$$

• $\mathcal{L}_{S_1} = [y_1^L]_{i\alpha} S_1 \bar{q}_i^c \epsilon l_\alpha + [y_1^R]_{i\alpha} S_1 \bar{u}_i^c e_\alpha + \text{h.c.}$

|n[8]:= InitializeModel["Mediators", Mediators → {"S1" → {2000, 0}}]

Initialized mediator mode:

s-channel: $\langle | Photon \rightarrow \{ Vector \} \}$, ZBoson $\rightarrow \{ Vector \} \}$, WBoson $\rightarrow \{ Vector \}$

t-channel: <| |>

u-channel: $\langle | S1 \rightarrow \{ Scalar, Vector, Tensor \} | \rangle$

[LA, Faroughy, Jaffredo, Sumensari, Wilsch 2207.10714]

Example: $b \rightarrow s\tau\tau$ transitions (WIP)

- Hard to measure at low energies \rightarrow chance that LHC is stronger
- Related to R_D , R_{D^*} explanations by $SU(2)_L$ rotation (LH case)

Experimental bounds (90% C.L.)

Standard model rates

Study case: $U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$ $\mathcal{L}_{U_1} = [x_1^L]_{i\alpha} \, \bar{q}_i \psi_1 l_\alpha + [x_1^R]_{i\alpha} \, \bar{d}_i \psi_1 e_\alpha + \text{h.c.}$

 \rightarrow contribution to both vector and scalar operators

$$\mathcal{O}_{lq}^{(1)} = (\bar{l}\gamma_{\mu}l)(\bar{q}\gamma^{\mu}q) \qquad \qquad \mathcal{O}_{ed} = (\bar{e}\gamma_{\mu}e)(\bar{d}\gamma^{\mu}d) \\ \mathcal{O}_{lq}^{(3)} = (\bar{l}\gamma_{\mu}\sigma^{I}l)(\bar{q}\gamma^{\mu}\sigma^{I}q) \qquad \qquad \mathcal{O}_{ledq} = (\bar{l}e)(\bar{d}q)$$

Vector scenario: $[C_{lq}^{(1+3)}]_{3323}$ and $[C_{ed}]_{3323}$

• HighPT code for $pp \to \tau\tau, \tau\nu$ likelihood(s)

Hdd tou ATLA					
Coofficients		C(M101W (2 2 2 2)) MC(W102W (2 2 2 2)) MC(W0dW (2 2 2 2)))			
Coerreners → (wc[~uq.", {3, 3, 2, 3}], wc[~uqs", {3, 3, 2, 3}], wc[~ed", {3, 3, 2, 3}])] // Total;					
ROCESS	:	$pp \rightarrow \tau^* \tau^*$			
XPERIMENT		ATLAS			
RXIV	:	arXiv:2002.12223			
OURCE	:	hepdata: Table 3			
BSERVABLE		m ^{tot}			
INNING m ^{tot} [GeV]	:	{150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1150, 1500}			
VENTS OBSERVED	:	{1167, 1568, 1409, 1455, 1292, 650, 377, 288, 92, 57, 27, 14, 11, 13}			
UMINOSITY [fb ⁻¹]	:	139			
INNING √ŝ [GeV]		{150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1150, 1500}			
INNING pr [GeV] x2tv = ChiSquareL "mono-tau-AT Coefficients	: HC (TLAS",	(0,=) 			
<pre>IINNING pT [GeV] x2tv = ChiSquareL "mono-tau-AT Coefficients] // Total;</pre>	: ILAS", ⊶ (₩0	(8,=) [""(q1", (3, 3, 2, 3)], WC["(q3", (3, 3, 2, 3)], WC["ed", (3, 3, 2, 3)])			
<pre>INNING pr [GeV] x2tv = ChiSquareL "mono-tau-AT Coefficients] // Total; PROCESS</pre>	: HC[TLAS", \$→ (₩0	(8, =) [""lq1", (3, 3, 2, 3)], WC("lq3", (3, 3, 2, 3)], WC("ed", (3, 3, 2, 3)]) 			
INNING pr [GeV] x2tv = ChiSquareL "mono-tau-AT Coefficients] // Total; ROCESS XPERIMENT	: HC[TLAS", s → (WC :	(8,=) [["[qi", (3, 3, 2, 3)], WC["lq3", (3, 3, 2, 3)], WC["ed", (3, 3, 2, 3)]} pp = ty			
INNING p _T [GeV] x2tv = ChiSquareL "mono-tau-AT Coefficients] // Total; ROCESS XPERIMENT RXIV	: TLAS", :→ (WC : :	(8,=) [("iq1", (3, 3, 2, 3)], WC("iq3", (3, 3, 2, 3)], WC("ed", (3, 3, 2, 3)])			
INNING p _T [GeV] x2tv = ChiSquareL "mono-tau-AT Coefficients] // Total; ROCESS XPERIMENT RXIV OURCE	: ILAS", ILAS", ⇒ (WO	(8, ∞) C("lq1", (3, 3, 2, 3)], WC("lq3", (3, 3, 2, 3)], WC("ed", (3, 3, 2, 3)]) pp → U ⁽²⁾ pp → V ⁽²⁾ ATLA5-CM-2921-025 Flagre 5			
INNING p _T [GeV] x2tv = ChiSquareL "mono-tau-AT Coefficients] // Total; ROCESS XPERIMENT RXIV OURCE BSERVABLE	: ILAS", s → (WC : : : :	(0, =) [("iqi", (3, 3, 2, 3)], WC["iqi", (3, 3, 2, 3)], WC["ed", (3, 3, 2, 3)])			
INNING pr [GeV] x2tv = ChiSquareL "mono-tau-AT Coefficients] // Total; ROCESS xPERIMENT RXIV OURCE BSERVABLE INNING mr [GeV]	: ILAS", ILAS'', ILA	(8, =) [("lq1", (3, 3, 2, 3)], WC("lq3", (3, 3, 2, 3)], WC("ed", (3, 3, 2, 3)]) pp → 1:" pp → 1:: pp			
INNING pr [GeV] x2tv = ChiSquareL "mono-tau-AT Coefficients] // Total; ROCESS RPERIMENT RXIV OURCE BSERVABLE IMNING mr [GeV] VENTS OBSERVED	: TLAS", : → (WC : : : :	(0, =) [("iqi", (3, 3, 2, 3)], WC["iqi", (3, 3, 2, 3)], WC["ed", (3, 3, 2, 3)])			
INNING pr [GeV] x2tv = ChiSquareL "mono-tau-AT Coefficients] // Total; ROCESS XPREINENT RXIV OURCE SEREVABLE INNING m. (GeV) VENTS OBSERVED ULINOSITY (fb ⁻¹)	: TLAS", : : : : : : :	(0, =) [("lq1", (3, 3, 2, 3)], WC("lq3", (3, 3, 2, 3)], WC("ed", (3, 3, 2, 3)]) pp → 1° pp → 1° p			
INNING pr [GeV] x2tv = ChiSquareL mono-tau-AT Coefficients] // Total; ROCESS XPERIMENT RXIV OURCE SSERVAGLE SSERVAGLE UNING (GeV) VENTS OBSERVED UNING (GeV)	: ILAS", : → (W : : : : : : :	(0, =) [("lq1", (3, 3, 2, 3)], WC("lq3", (3, 3, 2, 3)], WC("ed", (3, 3, 2, 3)]) pp			

[LA, Faroughy, Jaffredo, Sumensari, Wilsch, to appear]

- Target: $\mathcal{L}_{int} = 3 \text{ ab}^{-1}$, compared to the 140 fb⁻¹ shown here
- Expect S/N ratio to scale with $\sqrt{\mathcal{L}_{int}}$
- If NP large, expect the $|\mathcal{C}|^2$ term to dominate in the cross-section

$$\mathcal{C}\sim\mathcal{L}_{\mathrm{int}}^{1/4}$$

 \rightarrow Expect improvement by a factor ~ 2 with full statistics

• Two benchmarks for the scaling of the background uncertainty

LFU ratios:
 (τ vs light leptons)

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)}\tau\bar{\nu})}{\mathcal{B}(B \to D^{(*)}\ell\bar{\nu})}$$
$$\ell = \mu, e$$

- Currently $\sim 3\sigma$ tension
- Other ratios: R_{Λ_c} , $R_{J/\psi}$

Low-energy effective description:

$$\begin{split} \mathcal{L}_{\text{eff}}^{b \to c \tau \nu} &= -2\sqrt{2}G_F V_{cb} \Big[(1+C_{V_L}) \big(\bar{c}_L \gamma_\mu b_L \big) \big(\bar{\tau}_L \gamma_\mu \nu_L \big) + C_{V_R} \big(\bar{c}_R \gamma_\mu b_R \big) \big(\bar{\tau}_L \gamma_\mu \nu_L \big) \\ &+ C_{S_L} \big(\bar{c}_R b_L \big) \big(\bar{\tau}_R \nu_L \big) + C_{S_R} \big(\bar{c}_L b_R \big) \big(\bar{\tau}_R \nu_L \big) + C_T \big(\bar{c}_R \sigma_{\mu\nu} b_L \big) \big(\bar{\tau}_R \sigma^{\mu\nu} \nu_L \big) \Big] + \text{h.c.} \,, \end{split}$$
(Assume NP effect in $b \to c \tau \nu$)

(*0.4 *02

0.35

0.3

LHCb

Belle

R(D)

68% CL contours

BaBar

High-scale $(\Lambda_{\rm NP} \gg v)$ New Physics

- Use SMEFT to describe low-energy behaviour
- For Drell-Yan: could see effect of explicit mediator in the tails

Example: $U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$, LH couplings only

$$\mathcal{L}_{U_1} = [x_1^L]_{i\alpha} \, \bar{q}_i \not U_1 l_\alpha + \text{h.c.}$$

 \rightarrow contribution to singlet and triplet semileptonic operators

$$\mathcal{O}_{lq}^{(1)} = (\bar{l}\gamma_{\mu}l)(\bar{q}\gamma^{\mu}q) \\
\mathcal{O}_{lq}^{(3)} = (\bar{l}\gamma_{\mu}\sigma^{I}l)(\bar{q}\gamma^{\mu}\sigma^{I}q) \\
\supset (\bar{e}_{L}\gamma_{\mu}\nu_{L})(\bar{d}_{L}\gamma^{\mu}u_{L})$$

$$[\mathcal{C}_{lq}^{(1)}]_{\alpha\beta ij} = [\mathcal{C}_{lq}^{(1)}]_{\alpha\beta ij} = -\frac{1}{2m_{U_{1}}^{2}}[x_{1}^{L}]_{i\beta}[x_{1}^{L}]_{j\alpha}^{*}$$

- Get constraints from $pp \to \tau \tau, \tau \nu$
- Can compare the model vs. EFT hypotheses

Combined fit $(R_{D^{(*)}} + EWPO + Drell-Yan)$

EFT $(U_1 \text{ matched to SMEFT})$

- Flavor: R_D , R_{D^*}
- dashed (dotted) lines: 3 ab⁻¹ projections
- LHC already constrains the parameter space

[LA, Faroughy, Jaffredo, Sumensari, Wilsch 2207.10714]

Combined fit $(R_{D^{(*)}} + EWPO + Drell-Yan)$

LQ Model

 $U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$

- Flavor: R_D , R_{D^*}
- dashed (dotted) lines: 3 ab⁻¹ projections
- LHC already constrains the parameter space
- Constraints slightly relaxed w.r. to EFT case (effect of the LQ propagation)
- Also $s\bar{s} \to \tau\tau$ contributes

[LA, Faroughy, Jaffredo, Sumensari, Wilsch 2207.10714]

$R_2 \ \overline{\mathbf{L}} \mathbf{Q} \ \mathbf{fit} \ (R_{D^{(*)}} + \overline{\mathbf{EWPO}} + \mathbf{Drell-Yan})$

$$\mathcal{L}_{R_2} = -[y_2^L]_{i\alpha} \,\bar{u}_i R_2 \epsilon l_\alpha + [y_2^R]_{i\alpha} \,\bar{q}_i e_\alpha R_2 + \text{h.c.}$$

EFT LQ mode

[LA, Faroughy, Jaffredo, Sumensari, Wilsch 2207.10714]

- Studied tree-level NP effects in Drell-Yan in general
- Mathematica package HighPT automating the likelihoods
- Drell-Yan tails can give complementary information to flavour
- Improvement with HL-LHC by a factor $\sim 2~({\rm roughly})$
- Could possibly be enough to rule out some scenarios

Thank you!

Backup

Hadronic cross-section

$$\begin{split} \mathcal{A}(\bar{q}_{i}q'_{j} \rightarrow \ell_{\alpha}\bar{\ell}'_{\beta}) &= \frac{1}{v^{2}}\sum_{XY} \left\{ \begin{array}{l} \left(\bar{\ell}_{\alpha}\gamma^{\mu}\mathbb{P}_{X}\ell'_{\beta}\right) \left(\bar{q}_{i}\gamma_{\mu}\mathbb{P}_{Y}q'_{j}\right) \left[\mathcal{F}_{V}^{XY,qq'}(\hat{s},\hat{t})\right]_{\alpha\beta ij} \\ &+ \left(\bar{\ell}_{\alpha}\mathbb{P}_{X}\ell'_{\beta}\right) \left(\bar{q}_{i}\mathbb{P}_{Y}q'_{j}\right) \left[\mathcal{F}_{S}^{XY,qq'}(\hat{s},\hat{t})\right]_{\alpha\beta ij} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell'_{\beta}\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q'_{j}\right) \delta^{XY} \left[\mathcal{F}_{T}^{XY,qq'}(\hat{s},\hat{t})\right]_{\alpha\beta ij} \\ &+ \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell'_{\beta}\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q'_{j}\right) \frac{ik_{\nu}}{v} \left[\mathcal{F}_{D_{q}}^{XY,qq'}(\hat{s},\hat{t})\right]_{\alpha\beta ij} \\ &+ \left(\bar{\ell}_{\alpha}\sigma^{\mu\nu}\mathbb{P}_{X}\ell'_{\beta}\right) \left(\bar{q}_{i}\gamma_{\mu}\mathbb{P}_{Y}q'_{j}\right) \frac{ik_{\nu}}{v} \left[\mathcal{F}_{D_{\ell}}^{XY,qq'}(\hat{s},\hat{t})\right]_{\alpha\beta ij} \right\} \end{split}$$

$$\sigma_B(pp \to \ell_\alpha^- \ell_\beta^+) = \frac{1}{48\pi v^2} \sum_{XY, IJ} \sum_{ij} \int_{m_{\ell\ell_0}}^{m_{\ell\ell_1}^2} \frac{\mathrm{d}\hat{s}}{s} \int_{-\hat{s}}^0 \frac{\mathrm{d}\hat{t}}{v^2} M_{IJ}^{XY} \mathcal{L}_{ij} \left[\mathcal{F}_I^{XY,qq}\right]_{\alpha\beta ij} \left[\mathcal{F}_J^{XY,qq}\right]_{\alpha\beta ij} \left[\mathcal{F}_J^{XY,q}\right]_{\alpha\beta ij$$

 $\begin{array}{c} \text{interference} \\ \text{matrix} \\ \end{array} \begin{array}{c} M^{XY}(\hat{s},\hat{t}) = \begin{pmatrix} M^{XY}_{VV}(\hat{t}/\hat{s}) & 0 & 0 & 0 \\ 0 & M^{XY}_{SS}(\hat{t}/\hat{s}) & M^{XY}_{ST}(\hat{t}/\hat{s}) & 0 & 0 \\ 0 & M^{XY}_{ST}(\hat{t}/\hat{s}) & M^{XY}_{TT}(\hat{t}/\hat{s}) & 0 & 0 \\ 0 & 0 & 0 & \frac{\hat{s}}{v^2} M^{XY}_{DD}(\hat{t}/\hat{s}) & 0 \\ 0 & 0 & 0 & 0 & \frac{\hat{s}}{v^2} M^{XY}_{DD}(\hat{t}/\hat{s}) \end{pmatrix} \end{array}$

parton
luminosities
$$\mathcal{L}_{ij}(\hat{s}) \equiv \int_{\hat{s}/s}^{1} \frac{\mathrm{d}x}{x} \left[f_{\bar{q}_i}\left(x,\mu\right) f_{q_j}\left(\frac{\hat{s}}{sx},\mu\right) + (\bar{q}_i \leftrightarrow q_j) \right]$$

Leptoquarks in HighPT

	SM rep.	Spin	$\mathcal{L}_{ ext{int}}$
S_1	$(\bar{3},1,1/3)$	0	$\mathcal{L}_{S_1} = [y_1^L]_{i\alpha} S_1 \bar{q}_i^c \epsilon l_\alpha + [y_1^R]_{i\alpha} S_1 \bar{u}_i^c e_\alpha + \ [\bar{y}_1^R]_{i\alpha} S_1 \bar{d}_i^c N_\alpha + \text{h.c.}$
\widetilde{S}_1	$(\bar{3},1,4/3)$	0	$\mathcal{L}_{\widetilde{S}_1} = [\widetilde{y}_1^R]_{i\alpha} \widetilde{S}_1 \overline{d}_i^c e_\alpha + \mathrm{h.c.}$
U_1	(3 , 1 ,2/3)	1	$\mathcal{L}_{U_1} = [x_1^L]_{i\alpha} \bar{q}_i \mathcal{V}_1 l_\alpha + [x_1^R]_{i\alpha} \bar{d}_i \mathcal{V}_1 e_\alpha + [\bar{x}_1^R]_{i\alpha} \bar{u}_i \mathcal{V}_1 N_\alpha + \text{h.c.}$
\widetilde{U}_1	(3 , 1 ,5/3)	1	$\mathcal{L}_{\widetilde{U}_1} = [\widetilde{x}_1^R]_{i\alpha} \overline{u}_i \widetilde{\mathcal{U}}_1 e_\alpha + \text{h.c.}$
R_2	$({\bf 3},{\bf 2},7/6)$	0	$\mathcal{L}_{R_2} = -[y_2^L]_{i\alpha} \bar{u}_i R_2 \epsilon l_\alpha + [y_2^R]_{i\alpha} \bar{q}_i e_\alpha R_2 + \text{h.c.}$
\widetilde{R}_2	$({\bf 3},{\bf 2},1/6)$	0	$\mathcal{L}_{\widetilde{R}_2} = -[\widetilde{y}_2^L]_{i\alpha} \bar{d}_i \widetilde{R}_2 \epsilon l_\alpha + [\widetilde{y}_2^R]_{i\alpha} \bar{q}_i N_\alpha \widetilde{R}_2 + \mathrm{h.c.}$
V_2	$(\bar{3},2,5/6)$	1	$\mathcal{L}_{V_2} = [x_2^L]_{i\alpha} \bar{d}_i^c V_2 \epsilon l_\alpha + [x_2^R]_{i\alpha} \bar{q}_i^c \epsilon V_2 e_\alpha + \text{h.c.}$
\widetilde{V}_2	$(\bar{3},2,-1/6)$	1	$\mathcal{L}_{\widetilde{V}_2} = [\widetilde{x}_2^L]_{i\alpha} \overline{u}_i^c \widetilde{V}_2 \epsilon l_\alpha + [\widetilde{x}_2^R]_{i\alpha} \overline{q}_i^c \epsilon \widetilde{V}_2 N_\alpha + \text{h.c.}$
S_3	$(\bar{3},3,1/3)$	0	$\mathcal{L}_{S_3} = [y_3^L]_{i\alpha} \bar{q}_i^c \epsilon(\tau^I S_3^I) l_\alpha + \text{h.c.}$
U_3	(3 , 3 ,2/3)	1	$\mathcal{L}_{U_3} = [x_3^L]_{i\alpha} \bar{q}_i (\tau^I \not\!\!\! U_3^I) l_\alpha + \mathrm{h.c.}$

Vector+scalar scenario: $[C_{lq}^{1+3}]_{3323}$ and $[C_{ledq}]_{3332}$

[LA, Faroughy, Jaffredo, Sumensari, Wilsch, to appear]

Vector+scalar scenario: $[C_{lq}^{1+3}]_{3323}$ and $[C_{ledq}]_{3332}$

[LA, Faroughy, Jaffredo, Sumensari, Wilsch, to appear]