<u>Fundamental Interactions at Future Colliders (LFC24)</u>

Flavour at Future e+e- machines

Trieste, 16-20/09/24

M. Fedele

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

The Status of Flavour Physics

Flavour Physics allows for a fantastic playground to test the Standard Model and probe for New Physics effects. The unitarity of the CKM matrix is a fundamental consistency check

$$ar{
ho} = 0.160 \pm 0.009 \sim 6\%$$

 $ar{\eta} = 0.346 \pm 0.009 \sim 3\%$
 $\lambda = 0.2251 \pm 0.0008$

 $A = 0.827 \pm 0.010$

Wolfenstein parameters determined with ever-increasing precision, but (un)fortunately all measurements are in perfect agreement!

The Flavour NP reach

To describe heavy NP effects, it is customary to employ effective Hamiltonians, where the UV degrees of freedom are integrated out and which allow model-independent analyses

Within reach of future colliders!

In current baseline FCC-ee design, runs will yield $6 \times 10^{12} Z$ bosons Enormous potential as a B factory, when compared with Belle II and LHCb

Attribute

All hadron species High boost Enormous production cro Negligible trigger losses Low backgrounds Initial energy constraint

#1: lack of high production x-section compensated by much larger instantaneous luminosity #2: b and c hadrons momenta not known a priori, but their distributions are very well understood

Particle count (10 ⁹)	$B^0(\bar{B^0})$	B^{\pm}	$B_s^0(B_s^0)$	B_c^{\pm}	$\Lambda_b(\bar{\Lambda_b})$	$c(\bar{c})$	$ au^{\pm}$
Belle-II	55	55	0.6	N.A.	N.A.	130	90
FCC-ee	770	770	170	7	150	1400	400

FCC-ee as a B factory

	$\Upsilon(4S)$	pp	Z^0	
		\checkmark	\checkmark	
		\checkmark	\checkmark	
oss-section		\checkmark		#1
	\checkmark		\checkmark	
	\checkmark		\checkmark	
	\checkmark		(√)	#2

• $b \rightarrow q \ell \nu$

• $b \rightarrow s \nu \nu$

• $h \rightarrow bs, h \rightarrow cu$

 τ Physics \bigcirc

<u>Overview</u>

• $b \rightarrow q \ell \nu$

• $b \rightarrow s \nu \nu$

• $h \rightarrow bs, h \rightarrow cu$

• τ Physics

<u>Overview</u>

Helicity suppressed, tree-level decay

Main uncertainties come from CKM elements (UTA) and decay constants (Lattice)

$$\mathcal{B}(B_q^+ \to \tau^+ \nu_{\tau})^{\text{SM}} = \tau_{B_q^+} \frac{G_F^2 |V_{qb}|^2 f_{B_q^+}^2 m_{B_q^+} m_{\tau}^2}{8\pi} \left(1 - \frac{m_{\tau}^2}{m_{B_q^+}^2}\right)^2, \quad q = u, c$$

 $|V_{cb}|^{\text{UTA}} = 42.22(51) \times 10^{-3}, f_{B_c} = 427(6) \text{ MeV}$

 $|V_{ub}|^{\text{UTA}} = 3.70(11) \times 10^{-3}, f_{B^+} = 190.0(1.3) \text{ MeV}$ 2212.03894 2111.09849 UTfit Collaboration FLAG

According to present Lattice estimates, decay constants errors could be halved in the next decade!

$B \rightarrow \tau \nu$: the SM status

$$\Rightarrow \quad \mathcal{B}(B_c^+ \to \tau^+ \nu_{\tau})^{\text{SM}} = 2.29(9) \times 10^{10}$$

$$\mathcal{B}(B^+ \to \tau^+ \nu_\tau)^{\text{SM}} = 0.87(5) \times 10$$

-ee

Signal yield precision expected in the range $\approx 2-4\%$, easily translating in an analogous precision for the Br

Signal yield precision expected in the range $\approx 2\%$, <u>not</u> easily translating in an analogous precision for the Br due to poor knowledge of hadronisation fraction $f(B_c^{\pm})$. Strategy:

$$\frac{N(B_c^+ \to \tau^+ \nu_{\tau})}{N(B_c^+ \to J/\psi\mu^+ \nu_{\mu})} = \frac{\mathscr{B}(B_c^+ \to \tau^+ \nu_{\tau})}{\mathscr{B}(B_c^+ \to J/\psi\mu^+ \nu_{\mu})}$$

It is possible to extract the Br modulo CKM multiplying by

$$\Gamma_{\rm theo}(B_c^+\to J/\psi\mu^+\nu_\mu)/|V_{cb}|^2$$

$|V_{\mu h}|$ from $B \rightarrow \tau \nu$ at FCC-ee

Potential to play a role in the determination of $|V_{ub}^{excl.}|$ in the future, contrary to present situation! 2305.02998 Zuo, MF, Helsen, Hill, Iguro, Klute

The direct measurement of $B^+ \to \tau^+ \nu$ allows for an excl. determination of $|V_{ub}|$ from this channel

<u> $B \rightarrow \tau \nu$: NP implications</u>

 $\mathcal{B}(B_q^+ \to \tau^+ \nu_\tau) = \mathcal{B}(B_q^+ \to \tau^+ \nu_\tau)^{\mathrm{SM}} \times \left| 1 \right|$

 $O_{V_{L(R)}} = (\bar{q}_{L(R)}\gamma_{\mu}b_{L(R)})(\bar{\tau}_{L}\gamma_{\mu}\nu_{L})$

2305.02998 Zuo, MF, Helsen, Hill, Iguro, Klute

Extremely sensitive to scalar BSM extensions (2HDM, LQ), which lift helicity suppression

$$-\left(C_{V_R}^q - C_{V_L}^q\right) + \left(C_{S_R}^q - C_{S_L}^q\right) rac{m_{B_q}^2}{m_{ au}(m_b + m_q)} \Bigg|^2$$

$$O_{S_{L(R)}} = (\bar{q}_{R(L)}b_{L(R)})(\bar{\tau}_R\nu_L)$$

<u> $B \rightarrow \tau \nu$: G2HDM</u>

$\mathcal{L}_{\text{G2HDM}} \supset y_0^q H^-(\bar{b}P_R q) - y_\tau H^-(\bar{\tau}P_L \nu_\tau) + \text{h.c.}$

2305.02998 Zuo, MF, Helsen, Hill, Iguro, Klute

 $\mathscr{L}_{S_1} = y_L^{ij} \overline{Q_i^C} i \tau_2 L_j S_1 + y_R^{ij} \overline{u_{Ri}^C} l_{Rj} S_1 + h.C.$

2305.02998 Zuo, MF, Helsen, Hill, Iguro, Klute

<u> $B \rightarrow \tau \nu$: S_1 Leptoquark</u>

Zuo, MF, Helsen, Hill, Iguro, Klute

<u> $B \rightarrow \tau \nu$: U_1 Leptoquark</u>

 $\mathscr{L}_{U_{1}} = \hat{z}_{L}^{ij}\overline{Q_{i}}\gamma_{\mu}L_{j}U_{1}^{\mu} + \hat{z}_{R}^{ij}\overline{d_{Ri}}\gamma_{\mu}l_{Rj}U_{1}^{\mu} + \text{h.c.} \qquad \Rightarrow \qquad C_{V_{L}}^{q}(\mu_{LQ}) = \frac{\left(Vz_{L}\right)^{q\tau}\left(z_{L}^{*}\right)^{b\tau}}{2\sqrt{2}G_{F}V_{qb}m_{U_{1}}^{2}}, \quad C_{S_{R}}^{q}(\mu_{LQ}) = -\frac{\left(Vz_{L}\right)^{q\tau}\left(z_{R}^{*}\right)^{b\tau}}{\sqrt{2}G_{F}V_{qb}m_{U_{1}}^{2}}$

• $b \rightarrow q \ell \nu$

• $b \rightarrow s \nu \nu$

• $h \rightarrow bs, h \rightarrow cu$

τ Physics 0

<u>Overview</u>

 \bullet Loop-level decay dominated by short-distance effects (C_L), negligible long-distance

$$\langle \bar{K}(k)|\bar{s}\gamma^{\mu}b|\bar{B}(p)\rangle = \left[(p+k)^{\mu} - \frac{m_{B}^{2} - m_{K}^{2}}{q^{2}}q^{\mu}\right]f_{+}(q^{2}) + \frac{m_{B}^{2} - m_{K}^{2}}{q^{2}}q^{\mu}f_{0}(q^{2})$$

$$\langle K^{*}(k,\varepsilon)|\bar{c}\gamma_{\mu}b|\bar{B}(p)\rangle = -i\epsilon_{\mu\nu\alpha\beta}\varepsilon^{*\nu}p^{\alpha}k^{\beta}\frac{2V(q^{2})}{m_{B}+m_{K^{*}}}$$

$$\langle K^{*}(k,\varepsilon)|\bar{c}\gamma_{\mu}\gamma_{5}b|\bar{B}(p)\rangle = e_{\mu}^{*}(m_{B}+m_{K^{*}})A_{1}(q^{2}) - (p+k)_{\mu}(\varepsilon^{*}q)\frac{A_{2}(q^{2})}{m_{B}+m_{K^{*}}}$$

$$-q_{\mu}(\varepsilon^{*}q)\frac{2m_{K^{*}}}{q^{2}}\left[\frac{m_{B}+m_{K^{*}}}{2m_{K^{*}}}A_{1}(q^{2}) - \frac{m_{B}-m_{K^{*}}}{2m_{K^{*}}}A_{2}(q^{2}) - A_{0}(q^{2})\right]$$

$$\begin{split} p)\rangle &= \left[(p+k)^{\mu} - \frac{m_B^2 - m_K^2}{q^2} q^{\mu} \right] f_+(q^2) + \frac{m_B^2 - m_K^2}{q^2} q^{\mu} f_0(q^2) \\ & \\ \langle K^*(k,\varepsilon) \,| \, \bar{c}\gamma_{\mu} b \,| \, \bar{B}(p) \rangle = - \, i\epsilon_{\mu\nu\alpha\beta} \varepsilon^{*\nu} p^{\alpha} k^{\beta} \frac{2V(q^2)}{m_B + m_{K^*}} \\ & \\ \varepsilon) \,| \, \bar{c}\gamma_{\mu}\gamma_5 b \,| \, \bar{B}(p) \rangle = \varepsilon_{\mu}^*(m_B + m_{K^*}) A_1(q^2) - (p+k)_{\mu} (\varepsilon^*q) \frac{A_2(q^2)}{m_B + m_{K^*}} \\ & - q_{\mu} (\varepsilon^*q) \frac{2m_{K^*}}{q^2} \left[\frac{m_B + m_{K^*}}{2m_{K^*}} A_1(q^2) - \frac{m_B - m_{K^*}}{2m_{K^*}} A_2(q^2) - A_0(q^2) \right] \end{split}$$

$$\begin{split} |\bar{B}(p)\rangle &= \left[(p+k)^{\mu} - \frac{m_B^2 - m_K^2}{q^2} q^{\mu} \right] f_+(q^2) + \frac{m_B^2 - m_K^2}{q^2} q^{\mu} f_0(q^2) \\ & \left[\langle K^*(k,\varepsilon) \, | \, \bar{c}\gamma_{\mu}b \, | \, \bar{B}(p) \rangle = - \, i\epsilon_{\mu\nu\alpha\beta} \varepsilon^{*\nu} p^{\alpha} k^{\beta} \frac{2V(q^2)}{m_B + m_{K^*}} \right] \\ & \left[\langle K^*(k,\varepsilon) \, | \, \bar{c}\gamma_{\mu}\gamma_5 b \, | \, \bar{B}(p) \rangle = \varepsilon^*_{\mu}(m_B + m_{K^*}) A_1(q^2) - (p+k)_{\mu}(\varepsilon^*q) \frac{A_2(q^2)}{m_B + m_{K^*}} \right] \\ & - q_{\mu}(\varepsilon^*q) \frac{2m_{K^*}}{q^2} \left[\frac{m_B + m_{K^*}}{2m_{K^*}} A_1(q^2) - \frac{m_B - m_{K^*}}{2m_{K^*}} A_2(q^2) - A_0(q^2) \right] \end{split}$$

2301.06990 Bečirević, Piazza, Sumensari

$B \rightarrow K^{(*)}\nu\nu$: the SM status

• Main uncertainties come from CKM elements $|\lambda_t| = |V_{tb}V_{ts}^*|$ (UTA) and Form Factors (Lattice)

<u>1503.05534</u> Bharucha, Straub, Zwicky 15

 $\frac{\mathrm{d}\mathcal{B}}{\mathrm{d}q^2}(B \to K\nu\bar{\nu}) = \mathcal{N}_K(q^2) |C_L^{\mathrm{SM}}|^2 |\lambda_t|^2 \left[f_+(q^2)\right]^2$

$$\mathcal{O}_{L}^{\nu_{i}\nu_{j}} = \frac{e^{2}}{(4\pi)^{2}} (\bar{s}_{L}\gamma_{\mu}b_{L})(\bar{\nu}_{i}\gamma^{\mu}(1-\gamma_{5})\nu_{j})$$

$$\begin{aligned} \mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) \times 10^6 \ \sigma_{\mathcal{B}_{K^+}} / \mathcal{B}_{K^+} \ \mathcal{B}(B^0 \to K_S \nu \bar{\nu}) \times 10^6 \ \sigma_{\mathcal{B}_{K_S}} / \mathcal{B}_{K_S} \end{aligned} \\ (5.06 \pm 0.14 \pm 0.28) \ 0.06 \ (2.05 \pm 0.07 \pm 0.12) \ 0.07 \end{aligned}$$

$$\begin{aligned} \mathcal{B}(B^+ \to K^{*+} \nu \bar{\nu}) \times 10^6 \ \sigma_{\mathcal{B}_{K^{*+}}} / \mathcal{B}_{K^{*+}} \ \mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu}) \times 10^6 \ \sigma_{\mathcal{B}_{K^{*0}}} / \mathcal{B}_{K^{*0}} \\ \hline (10.86 \pm 1.30 \pm 0.59) \ 0.12 \ (9.05 \pm 1.25 \pm 0.55) \ 0.15 \end{aligned}$$

<u>2301.06990</u> Bečirević, Piazza, Sumensari

<u> $B \rightarrow K^{(*)}\nu\nu$ </u>: the SM status

$$\frac{\mathrm{d}\mathcal{B}}{\mathrm{d}q^2}(B \to K^* \nu \bar{\nu}) = \mathcal{N}_{K^*}(q^2) |C_L^{\mathrm{SM}}|^2 |\lambda_t|^2 \mathcal{F}(Q^2)|C_L^{\mathrm{SM}}|^2 |\lambda_t|^2 |\lambda_t|^2 \mathcal{F}(Q^2)|C_L^{\mathrm{SM}}|^2 |\lambda_t|^2 |\lambda_t|^2 \mathcal{F}(Q^2)|C_L^{\mathrm{SM}}|^2 |\lambda_t|^2 |\lambda_t|^2$$

$$\mathcal{O}_{R}^{\nu_{i}\nu_{j}} = \frac{e^{2}}{(4\pi)^{2}} (\bar{s}_{R}\gamma_{\mu}b_{R})(\bar{\nu}_{i}\gamma^{\mu}(1-\gamma_{5})\nu_{j})$$

Sensitive to BSM effect on both left-handed and right-handed operator

Possible interpretation also in terms of weakly interacting light NP (axions)

$B \rightarrow K^{(*)} \nu \nu$: the current NP status

<u> $B^0 \rightarrow H^0 \nu \nu$ </u> (*D*) FCC-ee

2309.11353 Amhis, Kenzie, Reboud, Wiederhold

Sensitivity study performed on B^0 decays in Hadron + neutrinos

$|\lambda_t|$ from $B^0 \rightarrow H^0 \nu \nu$ @ FCC-ee

$$\mathcal{B}(\Lambda_b \to \Lambda \nu \bar{\nu})$$

$$\mathcal{B}(B \to K_S \nu \bar{\nu})$$

$$\mathcal{B}(B_s \to \phi \nu \bar{\nu})$$

$$\mathcal{B}(B \to K^* \nu \bar{\nu})$$
HFLAG 2021

HFLAG value based on unitarity and $|V_{cb}| = (40.0 \pm 1.0) \times 10^{-3}$ from $B \to D\ell\nu$ <u>2309.11353</u> Amhis, Kenzie, Reboud, Wiederhold

Several independent measurements for λ_t form the different hadronic channels

<u> $B^0 \rightarrow H^0 \nu \nu$: the future NP status</u>

Different channels constrain differently (but complementarily) the NP WCs

2309.11353 Amhis, Kenzie, Reboud, Wiederhold

• $b \rightarrow q \ell \nu$

• $b \rightarrow s \nu \nu$

• $h \rightarrow bs, h \rightarrow cu$

τ Physics

<u>Overview</u>

$h/Z \rightarrow q\bar{q}'$ decays: the SM status

• Loop-level decay suppressed by GIM mechanism, requiring two mass insertions for the higgs

Main uncertainties come from CKM elements (UTA) and higher order QCD corrections

2306.17520

Kamenik, Korajac, Szewc, Tammaro, Zupan

$$= N_C \frac{|\overline{M}(h/Z \to q\bar{q}')|^2}{16\pi m_{h/z}}$$

2306.17520 Kamenik, Korajac, Szewc, Tammaro, Zupan

<u> $h/Z \rightarrow q\bar{q}'$ decays @ FCC-ee</u>

$$h \rightarrow q\bar{q}'$$
 decays: 2HD

$$\mathcal{L}_{2\text{HDM}} \supset -\frac{\sqrt{2}m_i}{v} \delta_{ij} \bar{q}_L^i H_1 d_R^j - \sqrt{2} Y_{ij}^d d_R^j$$

$$H_{1} = \begin{pmatrix} G^{+} \\ \frac{1}{\sqrt{2}} \left(v + h_{1} + iG^{0} \right) \end{pmatrix}, \quad H_{2} = \begin{pmatrix} H^{+} \\ \frac{1}{\sqrt{2}} \left(h_{2} + iA \right) \end{pmatrix}$$

After integrating out heavy scalars, contributions to meson mixing through

$$C_{2} = -\frac{\left(Y_{bs}^{d*}\right)^{2}}{2} \left(\frac{s_{\alpha}^{2}}{m_{h}^{2}} + \frac{c_{\alpha}^{2}}{m_{H}^{2}} - \frac{1}{m_{A}^{2}}\right),$$

$$C_{2}' = -\frac{\left(Y_{sb}^{d}\right)^{2}}{2} \left(\frac{s_{\alpha}^{2}}{m_{h}^{2}} + \frac{c_{\alpha}^{2}}{m_{H}^{2}} - \frac{1}{m_{A}^{2}}\right),$$

$$C_{4} = -\left(Y_{bs}^{d*}Y_{sb}^{d}\right) \left(\frac{s_{\alpha}^{2}}{m_{h}^{2}} + \frac{c_{\alpha}^{2}}{m_{H}^{2}} + \frac{1}{m_{A}^{2}}\right).$$

$$\begin{split} C_2 &= -\frac{\left(Y_{bs}^{d*}\right)^2}{2} \left(\frac{s_{\alpha}^2}{m_h^2} + \frac{c_{\alpha}^2}{m_H^2} - \frac{1}{m_A^2}\right), \\ C_2' &= -\frac{\left(Y_{sb}^d\right)^2}{2} \left(\frac{s_{\alpha}^2}{m_h^2} + \frac{c_{\alpha}^2}{m_H^2} - \frac{1}{m_A^2}\right), \\ C_4 &= -\left(Y_{bs}^{d*}Y_{sb}^d\right) \left(\frac{s_{\alpha}^2}{m_h^2} + \frac{c_{\alpha}^2}{m_H^2} + \frac{1}{m_A^2}\right). \end{split}$$

2306.17520 Kamenik, Korajac, Szewc, Tammaro, Zupan

M implications @ FCC-ee

 $d\bar{q}_{L}^{i}H_{2}d_{R}^{j} - rac{\sqrt{2}m_{i}}{v}\delta_{ij}\bar{q}_{L}^{\prime i}\tilde{H}_{1}u_{R}^{j} - \sqrt{2}Y_{ij}^{u}\,\bar{q}_{L}^{\prime i}\tilde{H}_{2}u_{R}^{j}$

mass basis

$$\Rightarrow \qquad \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} c_\alpha & s_\alpha \\ -s_\alpha & c_\alpha \end{pmatrix} \begin{pmatrix} h \\ H \end{pmatrix}$$

<u> $h \rightarrow q\bar{q}'$ decays: 2HDM implications @ FCC-ee</u>

1st limit: H and A contributions numerically

2306.17520 Kamenik, Korajac, Szewc, Tammaro, Zupan

y small,
$$y_{bs,sb} = Y^d_{bs,sb} s_{\alpha}, \qquad y_{cu,uc} = Y^u_{cu,uc} s_{\alpha}$$

<u> $h \rightarrow q\bar{q}'$ decays: 2HDM implications @ FCC-ee</u>

2nd limit: H and A contributions numerically relevant, $m_H = m_A = 1$ TeV

 $\mathcal{B}_{h\to cu} = 2.5 \times 10^{-3}$

----- $\mathcal{B}_{h \to cu} = 2.9 \times 10^{-3}$

 $\mathcal{B}_{h\to cu} = 16\%$

 -10^{-2}

$\sin \alpha = 1 \times 10^{-1}$

• $b \rightarrow q \ell \nu$

• $b \rightarrow s \nu \nu$

• $h \rightarrow bs, h \rightarrow cu$

τ Physics 0

<u>Overview</u>

<u> $B \rightarrow K^* \tau \tau$ decays: the SM status</u>

ullet Loop-level decays dominated by short-distance effects ($C_{9,10}$), important long-distance

Additional uncertainties coming from non-perturbative charming penguins

 $Br(B \rightarrow$

Present limit from

$$K^* \tau \tau) = \mathcal{O}(10^{-7})$$

n BaBar, $\mathcal{O}(10^{-3} - 10^{-4})$

<u> $B \rightarrow K^* \tau \tau$ decays @ FCC-ee</u>

Undergoing feasibility study, based on hadronic τ reconstructions

LFU in τ decays: the SM status

 τ lifetime and lepton universality, with main uncertainties coming from mass measurements

$$\left(\frac{g_{\mu}}{g_{\rm e}}\right)^2 = \frac{\mathcal{B}(\tau \to \mu \bar{\nu} \nu)}{\mathcal{B}(\tau \to {\rm e} \bar{\nu} \nu)} \cdot \frac{f_{\tau {\rm e}}}{f_{\tau \mu}}$$

$$\left(\frac{g_{\tau}}{g_{\ell}}\right)^2 = \frac{\mathcal{B}(\tau \to \ell \,\bar{\nu} \nu)}{\mathcal{B}(\mu \to \ell \,\bar{\nu} \nu)} \cdot \frac{\tau_{\mu} m_{\mu}^5}{\tau_{\tau} m_{\tau}^5}$$

(up to small and known radiative, EW and PS corrections)

Current data supports lepton universality $\delta(g_{\tau}/g_e) \simeq \delta(g_{\tau}/g_{\mu}) = \mathcal{O}(10^{-3})$

LFU in τ decays @ FCC-ee

CLFV2023 Talk by A. Lusiani

studies: some channels already explored, many still to be addressed

parameters, potentially including channels currently not relevant

tested, with strongly increased potential for discovery

Conclusions

FCC-ee is far away in the future, but there is already a lot to be done in terms of sensitivity

Data collected at FCC-ee will have huge potential to enrich the determinations of CKM

Many different NP scenarios (more or less inspired by current anomalous data) to be

