Mapping the SMEFT at High-Energy Colliders

The University of Manchester

Marion Thomas

University of Manchester

LFC24- Fundamental Interactions at Future Colliders 17/09/24

Based on SMEFiT3.0 [arXiv:2404.12809]

with E. Celada, T. Giani, J. ter Hoeve, L. Mantani, J. Rojo, A. N. Rossia and E. Vryonidou

What can global EFT fits tell us?

- EFTs reveal high energy physics through precise measurements at low energy.
- Cross-talk between Higgs, top, diboson and EWPO (and eventually flavour) sectors
- Important to combine as many processes as possible to extract maximal information

Fitmaker Collaboration [arXiv:2012.02779]

Anke Biekötter - HET seminar Brookhaven

What can global EFT fits tell us?

- EFTs reveal high energy physics through precise measurements at low energy.
- Cross-talk between Higgs, top, diboson and EWPO (and eventually flavour) sectors
- Important to combine as many processes as possible to extract maximal information

ightarrow A simultaneous fit is a useful way forward

Challenge: a large number of operators, with many datasets needed to break degeneracies

Fitmaker Collaboration [arXiv:2012.02779]

Anke Biekötter - HET seminar Brookhaven

Theory Accurate predictions for the SM and the EFT SM: (N)NLO QCD + NLO EW EFT: NLO QCD, linear and quadratics, with SMEFT@NLO NNPDF4.0 no top

Experimental data

445 data points from Higgs, top, diboson (LHC) & EWPOs (LEP)

Experimental **uncertainties + correlations** as provided by experiments

Giani, Magni, Rojo, arXiv:2302.06660

SMEFIT

Experimental data

445 data points from Higgs, top, diboson (LHC) & EWPOs (LEP)

Experimental **uncertainties + correlations** as provided by experiments

Marion Thomas - LFC24 - 17/09/24

(Bayesian inference)

Overview of SMEFiT3.0

[arXiv:2105.00006]

Extension of SMEFiT2.0 with recent LHC Run-II datasets on top, diboson and Higgs production

- Exact treatment of LEP and SLD EWPOs
- Projections for HL-LHC pseudodata extrapolated from Run-II data
- Projections for FCC-ee and CEPC pseudodata from Snowmass predictions updated with FCC midterm Feasibility Report [arXiv:2206.08326] [CERN/3789/RA]
- Results for LHC Run-II and future colliders in terms of Wilson coefficients and UV-complete models
 [arXiv:2309.04523]
- Public code, data and theory: results are fully reproducible Incfitnikhef.github.io/smefit_release/

The experimental input

Extension of SMEFiT2.0 with recent LHC Run-II datasets on top, diboson and Higgs production

Category	Processes		lat	
Category	110005565	SMEFIT2.0	SMEFIT3.0	
	$t\bar{t} + X$	94	115	
	$tar{t}Z,tar{t}W$	14	21	
	$tar{t}\gamma$	-	2	
Top quark production	single top (inclusive)	27	28	
	tZ, tW	9	13	
	$tar{t}tar{t}$, $tar{t}bar{b}$	6	12	
	Total	150	191	
	Run I signal strengths	22	22	
Higgs production	Run II signal strengths	40	36	
and decay	Run II, differential distributions & STXS	35	71	
	Total	97	129	
	LEP-2	40	40	
Diboson production	LHC	30	41	
	Total	70	81	
EWPOs	LEP-2	_	44	+128 d
Baseline dataset	Total	317	445	points

SMEFiT3.0: Celada, Giani, ter Hoeve, Mantani, Rojo, Rossia, MT, Vryonidou [arXiv:2404.12809] SMEFiT2.0: Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, Vryonidou, Zhang [arXiv:2105.00006]

Which operators?

Warsaw basis of dim-6 SMEFT operators.
Flavour symmetry:

 $U(2)_q \times U(3)_d \times U(2)_u \times (U(1)_l \times U(1)_e)^3$ + Yukawa of bottom, charm and tau

Operator	Coefficien	t Definition	Operator	Coefficien	t Definition							
		3rd genera	tion quarks									
${\cal O}^{(1)}_{_{arphi Q}}$	$c^{(1)}_{arphi Q}$ (*)	$iig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu arphiig)ig(ar{Q}\gamma^\muQig)$	\mathcal{O}_{tW}	c_{tW}	$i (\bar{Q} au^{\mu u} au_I t) \tilde{\varphi} W^I_{\mu u} + ext{h.c.}$							
${\cal O}^{(3)}_{arphi Q}$	$c^{(3)}_{arphi Q}$	$iig(arphi^\dagger \! \stackrel{\leftrightarrow}{D}_\mu au_{\scriptscriptstyle I} arphiig)ig(ar{Q} \gamma^\mu au^{\scriptscriptstyle I} Qig)$	\mathcal{O}_{tB}	c_{tB} (*)	$i(\bar{Q}\tau^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu}+\text{h.c.}$							
${\cal O}_{arphi t}$	$c_{arphi t}$	$iig(arphi^\dagger \overleftrightarrow{D}_\mu arphi ig) ig(ar{t} \gamma^\mu t ig)$	\mathcal{O}_{tG}	c_{tG}	$ig_{S}\left(ar{Q} au^{\mu u}T_{\scriptscriptstyle A}t ight) ilde{arphi}G^{A}_{\mu u}\!+\! ext{h.c.}$							
\mathcal{O}_{tarphi}	c_{tarphi}	$\left(arphi^{\dagger} arphi ight) ar{Q} t ilde{arphi} + { m h.c.}$	\mathcal{O}_{barphi}	c_{barphi}	$\left(arphi^{\dagger} arphi ight) ar{Q} b arphi + { m h.c.}$							
1st, 2nd generation quarks												
$\mathcal{O}^{(1)}_{_{arphi q}}$	$c^{(1)}_{arphi q}$ (*)	$\sum\limits_{i=1,2} iig(arphi^\dagger \overset{\leftrightarrow}{D}_\mu arphi ig) ig(ar{q}_i \gamma^\mu q_i ig)$	$\mathcal{O}_{arphi d}$	$c_{arphi d}$	$\sum\limits_{i=1,2,3} iig(arphi^\dagger \overset{\leftrightarrow}{D}_\mu arphi ig) ig(ar{d}_i \gamma^\mu d_i ig)$							
${\cal O}^{(3)}_{_{arphi q}q}$	$c^{(3)}_{arphi q}$	$\sum\limits_{i=1,2} iig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu au_{\scriptscriptstyle I} arphi ig) ig(ar{q}_i \gamma^\mu au^{\scriptscriptstyle I} q_i ig)$	\mathcal{O}_{carphi}	$c_{c \varphi}$	$\left(arphi^{\dagger} arphi ight) ar{q}_2 c ilde{arphi} + { m h.c.}$							
$\mathcal{O}_{arphi u}$	$c_{arphi u}$	$\sum\limits_{i=1,2}^{\infty} iig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu arphi ig) ig(ar{u}_i \gamma^\mu u_i ig)$										
		two-le	eptons									
$\mathcal{O}_{_{arphi\ell_i}}$	$c_{arphi \ell_i}$	$iig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu arphiig)ig(ar{\ell}_i\gamma^\mu\ell_iig)$	$\mathcal{O}_{arphi\mu}$	$c_{arphi\mu}$	$iig(arphi^\dagger \overset{\leftrightarrow}{D}_\mu arphiig)ig(ar\mu\gamma^\mu\muig)$							
${\cal O}^{(3)}_{_{arphi\ell_i}}$	$c^{(3)}_{arphi \ell_i}$	$iig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu au_{\scriptscriptstyle I} arphiig)ig(ar{\ell}_i\gamma^\mu au^{\scriptscriptstyle I}\ell_iig)$	$\mathcal{O}_{arphi au}$	$c_{arphi au}$	$i ig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu arphi ig) ig(ar au \gamma^\mu au ig)$							
${\cal O}_{arphi e}$	$c_{arphi e}$	$iig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu arphiig)ig(ar e\gamma^\mueig)$	$\mathcal{O}_{ auarphi}$	$c_{ au arphi}$	$\left(arphi^{\dagger} arphi ight) ar{\ell_3} au arphi + { m h.c.}$							
		four-l	eptons									
$\mathcal{O}_{\ell\ell}$	$c_{\ell\ell}$	$\left(ar{\ell}_1\gamma_\mu\ell_2 ight)\left(ar{\ell}_2\gamma^\mu\ell_1 ight)$										
f		f			f V							
		h D	$\sim V$	7								
\bar{f}		\overline{f}			$ar{f}$ h							

Operator	Coefficient	Definition	Operator	Coefficient	Definition
${\cal O}_{arphi G}$	$c_{arphi G}$	$\left(arphi^{\dagger} arphi ight) G^{\mu u}_{\scriptscriptstyle A} G^{\scriptscriptstyle A}_{\mu u}$	$\mathcal{O}_{arphi\square}$	$c_{arphi\square}$	$\partial_\mu (arphi^\dagger arphi) \partial^\mu (arphi^\dagger arphi)$
${\cal O}_{arphi B}$	$c_{arphi B}$	$\left(\varphi^{\dagger} \varphi \right) B^{\mu u} B_{\mu u}$	$\mathcal{O}_{arphi D}$	$c_{arphi D}$	$(arphi^\dagger D^\mu arphi)^\dagger (arphi^\dagger D_\mu arphi)$
${\cal O}_{arphi W}$	$c_{arphi W}$	$\left(arphi^{\dagger} arphi ight) W^{\mu u}_{\scriptscriptstyle I} W^{\scriptscriptstyle I}_{\mu u}$	\mathcal{O}_W	c_{WWW}	$\epsilon_{IJK} W^I_{\mu u} W^{J, u ho} W^{K,\mu}_{ ho}$
${\cal O}_{arphi WB}$	$c_{arphi WB}$	$(arphi^\dagger au_{\scriptscriptstyle I} arphi) B^{\mu u} W^{\scriptscriptstyle I}_{\mu u}$			

DoF	Definition (in Warsaw basis notation)	DoF	Definition (in Warsaw basis notation)
c_{QQ}^1	$2c_{qq}^{1(3333)} - rac{2}{3}c_{qq}^{3(3333)}$	c_{QQ}^{8}	$8c_{qq}^{3(3333)}$
c_{Qt}^1	$c_{qu}^{1(3333)}$	c_{Qt}^8	$c_{qu}^{8(3333)}$
$c_{Qq}^{1,8}$	$c_{qq}^{1(i33i)} + 3c_{qq}^{3(i33i)}$	$\left egin{array}{c} c_{Qq}^{1,1} \end{array} ight $	$c_{qq}^{1(ii33)} + \tfrac{1}{6}c_{qq}^{1(i33i)} + \tfrac{1}{2}c_{qq}^{3(i33i)}$
$c_{Qq}^{3,8}$	$c_{qq}^{1(i33i)}-c_{qq}^{3(i33i)}$	$c_{Qq}^{3,1}$	$c_{qq}^{3(ii33)} + rac{1}{6}(c_{qq}^{1(i33i)} - c_{qq}^{3(i33i)})$
c_{tq}^8	$c_{qu}^{8(ii33)}$	c_{tq}^1	$c_{qu}^{1(ii33)}$
c_{tu}^8	$2c_{uu}^{(i33i)}$	c_{tu}^1	$c_{uu}^{(ii33)} + rac{1}{3}c_{uu}^{(i33i)}$
c_{Qu}^8	$c_{qu}^{8(33ii)}$	c_{Qu}^1	$c_{qu}^{1(33ii)}$
c_{td}^8	$c_{ud}^{8(33jj)}$	c_{td}^1	$c_{ud}^{1(33jj)}$
c_{Qd}^8	$c_{qd}^{8(33jj)}$	c_{Qd}^1	$c_{qd}^{1(33jj)}$

Simultaneous fit of **45 (50) Wilson coefficients** at the linear (quadratic) level

Most Wilson coefficients have bounds below 1

for $\Lambda = 1 \, \text{TeV}$

Quadratic terms important for most operators

Marginalised fit, linear (blue)

and quadratic (orange)

95% Confidence Level Bounds $(1/{\rm TeV^2})$

- Most Wilson coefficients have bounds below 1 for $\Lambda=$ 1 TeV
- Quadratic terms important for most operators
- Some exceptions like $c_{c\varphi}$ and $c_{\varphi t}$ due to degenerate solutions

- Most Wilson coefficients have bounds below 1 for $\Lambda=$ 1 TeV
- Quadratic terms important for most operators
- Some exceptions like $c_{c\phi}$ and $c_{\phi t}$ due to degenerate solutions
- Least constrained coefficients are 4-top operators

Marginalised fit, linear (blue) and quadratic (orange)

Marginalised fit

Marginalised fit

Impact of new datasets

Marginalised quadratic fit

8

How will this change at future experiments?

Implemented in SMEFiT

Collaboration

HL-LHC projections

Select SMEFiT3.0 datasets with highest integrated luminosity for each process type

Central values of pseudodata fluctuated around SM

- Rescale statistical uncertainties with luminosity Rescale systematic uncertainties by 1/2
 - + Flexible framework that can project any Run-II dataset
 - No HL-LHC optimisation (eg. bins in tail)

HL-LHC projections

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

- HL-LHC marginalised: Improvement ranging from 20% to factor of 3
- Individual bounds are overly optimistic
- **Further improvement expected** at HL-LHC with dedicated analyses

 $R_{\delta c_i} = \frac{\left[c_i^{\min}, c_i^{\max}\right]^{95\% \text{ CL}} \text{ (baseline + HL-LHC)}}{\left[c_i^{\min}, c_i^{\max}\right]^{95\% \text{ CL}} \text{ (baseline)}}$

Future circular lepton colliders

Observables considered:

- EWPOs at the Z-pole
- Light fermion pair production
- Higgs production in hZ and $h\nu\nu$ channels + all Higgs decays
- Diboson (W^+W^-) production
- Top quark pair production

Frorgy ($\mathcal{L}_{\mathrm{int}}$ (Ru				
Energy (V3)	FCC-ee (4 IPs)	CEPC (2 IPs)	~FCC-ee/~CEPC		
91 GeV (Z-pole)	300 ab^{-1} (4 years)	$100 \text{ ab}^{-1} (2 \text{ years})$	3		
161 GeV $(2 m_W)$	$20 \text{ ab}^{-1} (2 \text{ years})$	$6 \text{ ab}^{-1} (1 \text{ year})$	3.3		
240 GeV	$10 \text{ ab}^{-1} (3 \text{ years})$	$20 \text{ ab}^{-1} (10 \text{ years})$	0.5		
$350 { m GeV}$	$0.4 \text{ ab}^{-1} (1 \text{ year})$	0.2 ab^{-1}	2		
$365 \mathrm{GeV}(2m_t)$	3 ab^{-1} (4 years)	$1 \text{ ab}^{-1} (5 \text{ years})$	3		

Uncertainty projections from Snowmass study updated with FCC midterm Feasibility Report [arXiv:2206.08326] [CERN/3789/RA]

Constraints at the FCC-ee

Overall huge improvements on many coefficients

FCC-ee energy runs and CEPC

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

- Study impact of sequentially adding FCC-ee datasets for different energies
- Significant impact from combined Z-pole run (91 GeV) + Higgs factory (240 GeV)

FCC-ee energy runs and CEPC

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

HL-LHC + FCC-ee (91 + 240 GeV)

---- HL - LHC + FCC - ee (91 + 161 + 240 + 365 GeV)

- Study impact of sequentially adding FCC-ee datasets for different energies
- Significant impact from combined Z-pole run (91 GeV) + Higgs factory (240 GeV)

Very similar results for CEPC

Fisher information study

		LEP	$t\bar{t}$ 8 TeV	$tar{t}$ 13 TeV	$tar{t}\gamma$	$t\bar{t}W$	$t\bar{t}Z$	t 8 TeV	t 13 TeV	tW	tZ	$t \bar{t} A_c$	W helicities	$t\bar{t}t\bar{t} + t\bar{t}b\bar{b}$	Higgs-run I	Higgs-run II		<u>т 13</u> теv нь-ьно	$t\bar{t}W$ HL-LHC	$t\bar{t}Z$ HL-LHC	t 13 TeV HL-LHC	tW HL-LHC	tZ HL-LHC	$t\bar{t} A_c HL-LHC$	W helicities HL-LH	$t\bar{t}t\bar{t}$ + $t\bar{t}bb$ HL-LHC	Higgs HL-LHC	VV HL-LHC		FUC-ee IbI GeV		r UC-ee 303 GeV	
	c^1_{QQ}					= [гC	-1	L	1	r			14.0 15.1				1	L			L				86.0 84.9	_				\sim	00	
	c_{QQ}^{QQ} c_{Qt}^{1}					_ [- 1	IV.				18.1					1		- 1	- 1	R			81.9		4				- 60	
4H	c_{Qt}^8													14.1			-								_	85.9		-					
	c_{tt}^{1}	• •	0.4	8.4	0.2	1.6	1.3		• • •	• • •	•••	9.1	••	14.0 0.0	0.0	0.1		2.7	7.9	6.3	• • •	•••	•••	41.7	•	86.0 0.1	0.1	٠÷	•			-	
	$c_{Qq}^{1,1}$ $c_{Qq}^{1,1}$		0.3	10.4								11.6		0.0			3	1.2						46.4		0.2		÷					
	$c_{Qq}^{3,8}$		0.3	2.2	0.3	1.9	1.0	1.2	0.3			13.6		0.0	0.0	0.1	4	1.3	9.2	4.6	1.3			59.6		0.1	0.0						
	$c_{Qq}^{3,1}$		0.0	0.0				15.2	7.7		4.8	0.1		0.0		0.0	0).1			40.0		31.6	0.4		0.0	0.0	-					
	c_{tq}^{o}		0.5	6.9 10.1	1.0	4.1	2.3					8.1		0.1	0.0	0.3	= ¹	7.0 9.1	20.1	10.4				38.6 48.2		0.5	0.1	÷				-	- 8
21.21	c_{tq}^{8}		0.4	8.9	0.3		0.1					13.5		0.0	0.0	0.1	1	4.9		0.8				60.7		0.2	0.1	÷					
	c_{tu}^1		0.2	8.9								12.7		0.0			2	6.9						51.1		0.2							
	c_{Qu}^8		0.8	3.7	2.5		1.0					13.7		0.1	0.0	0.4	e	6.9		5.2				64.8		0.7	0.2	-					
	c_{Qu}^1		0.3	11.0								12.4		0.0			2	7.7					_	48.5		0.1		-					
	c_{td}°		0.7	14.4	0.3		0.4					9.7		0.0	0.0	0.2	2	9.1 8.8		2.0				42.8 37.1		0.2	0.1	÷					
	c_{td}^8		1.5	8.7	0.2		2.4					9.4		0.1	0.0	0.5	2	1.2		12.1				42.9		0.8	0.2	÷					
	c_{Qd}^1	L _	0.4	13.8								10.2		0.0			3	5.6						40.0		0.1							
	$c_{c\varphi}$										-				0.0	0.0											0.1			78	3.8 21	1.1	L,
	$c_{b\varphi}$														0.0	0.1	-										0.3	1		70	0.5 29	9.1	
	$c_{t\varphi}$														0.5	3.9	- 1										16.9	÷		53	3.6 25	5.1	
	$c_{\tau \varphi}$		1.8	1.3	0.1	0.0	0.1			0.0		0.0	0.0	0.1	1.3	9.1	•,	7.5	0.1	0.9		0.0		0.0	0.0	0.4	39.9	÷		2	5.4 1	1.9	
	C_{tW}				0.0		0.0	0.0	0.0	0.0	0.0		1.9		2.3	12.5				0.0	0.1	0.0	0.0		4.1		41.8			26	5.1 10	0.9	
	c_{tZ}				0.0		0.0				0.0				2.5	13.3	-			0.0			0.0				44.6	1		27	7.9 11	1.6	Ì
25	$c^{(3)}_{\varphi q}$	3.2				0.0	0.0	0.0	0.0		0.0				0.0	0.1	0.0		0.0	0.0	0.0		0.0				1.8	0.5 8	4.8 3	3.4 3	.5 2	2.7	
ZF	$c^{(3)}_{\varphi Q}$	1.8					0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0			0.0	0.0	0.0	0.0				0.0	0.0 9	B.1	0	.0 0	0.0	
	$c_{\varphi q}^{(-)}$	1.5					0.0				0.0				0.0	0.0	0.0			0.0			0.0				0.3	0.0 8	2.2	14	1.5 1 6.1 1	.5	
	$c_{\varphi \hat{Q}}$	3.8					0.0				0.0				0.0	0.1	0.0			0.0			0.0				1.1	0.0 9	5.1	C	0.0 C	0.0	- 4
	$c_{arphi d}$	4.5					0.0								0.0	0.0	0.0			0.0							0.2	0.0	5.2	0	0.0	0.0	
	$c_{\varphi t}$						11.2				0.1				0.3	1.8				74.8			0.5				6.2			3	.6 1	.5	
	$c_{\varphi l_1}$	1.6													0.0	0.0	0.0										0.0	0.0 4	2.5 (0.0 28	8.7 27	7.2	
	$c_{\varphi l_2}$	4.6													0.0	0.0	0.0										0.0	0.0 7	B.1	15	5.6 1 3.9 1	.7	ł
	$c_{\varphi l_3}$ $c^{(3)}$	0.1			0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0				0.0	0.0 3	.1 4	4.2 7	9.6 12	2.9	
	$c^{(3)}_{\mu l_1}$	0.1			0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0				0.0	0.0 1	.1 5	5.1 82	2.5 11	1.2	
	$c^{(3)}_{\varphi l_3}$	2.4													0.0	0.0	0.0										0.0	0.0	B.5 6	3.7 16	ð.2 6	5.3	
	$c_{\varphi e}$	1.5													0.0	0.0	0.0										0.0	0.0 3	1.0 0	0.0 41	1.5 25	5.9	- :
	$c_{\varphi\mu}$	4.3													0.0	0.0	0.0										0.0	0.0 7	8.6	15	5.4 1	.7	
-	$c_{\varphi\tau}$	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0				0.0	0.0 0	.1 2	2.5 5	2.9 4	4.5	
Gauge	$\mathbf{e}_{\varphi G}^{\circ a}$	• •	••	•••		• • •					•••	•••	••	•••	0.3	2.5	•••	•		•••				•••	••	••	10.9	-		5	8.7 27	7.6	
	$c_{\varphi B}$														2.5	13.2	-									-	44.1	i		28	8.6 11	1.7	
	$c_{\varphi W}$														1.1	5.8											19.4			46	5.4 27	7.3	
	φWB	0.0			0.0		0.0				0.0				0.0	0.0	0.0			0.0			0.0				0.1	0.0 0	.0 0	0.0 88	3.6 11	1.1	
$c_{\mathfrak{l}}$	WWW	0.2									0.0				0.0	0.1	0.1						0.0				0.2	4.8	0	7.U 60	5.2 2	4.5	
	ுφ⊔ c _ω ற	0.1			0.0		0.0				0.0				0.0	0.0	0.0			0.0			0.0				0.0	0.0	.1 0	0.0 8	8.8 11	1.0	
	T		_	_	_	_					_		_	_	_	_		-	-	_		_	_	_	_	_	_		_				1

- Quantifies which datasets have more sensitivity to given operator
- Proxy for linear individual fit

Normalized Value

- FCC-ee dominates nearly all operators except 4-quark operators, only accessible in pp collisions (tree level)
- Combination of 91 GeV and 240 GeV runs important to pin down 2-fermion and gauge operators
- FCC-ee run at 161 GeV is the least useful for the SMEFT

$$I_{ij} = \sum_{m=1}^{n_{\text{dat}}} \frac{\sigma_{m,i}^{(\text{eft})} \sigma_{m,j}^{(\text{eft})}}{\delta_{\exp,m}^2}, \qquad i, j = 1, \dots, n_{\text{eft}},$$

Conclusions

SMEFT is a consistent way to look for new interactions

- Global fits needed to combine all the information available in LHC measurements
- SMEFIT3.0: biggest global SMEFT analysis to date with 50 WC and 445 datapoints
- Demonstrated the impact of HL-LHC, FCC-ee and CEPC on global SMEFT parameter space with huge improvements predicted
- Extension to other future colliders in progress
- Public code, data and theory () Ihcfitnikhef.github.io/smefit_release/

Conclusions

SMEFT is a consistent way to look for new interactions

- Global fits needed to combine all the information available in LHC measurements
- SMEFiT3.0: biggest global SMEFT analysis to date with 50 WC and 445 datapoints
- Demonstrated the impact of HL-LHC, FCC-ee and CEPC on global SMEFT parameter space with huge improvements predicted
- Extension to other future colliders in progress
- Public code, data and theory Discritication in the second straight the second straight

Thank you !

Full treatment of EWPOs

In the SMEFT, Z and W fermionic couplings receive corrections from dim-6 operators.

$$\begin{split} \delta g_V^{l_i} &= \delta \bar{g}_Z \bar{g}_V^{l_i} + Q^{l_i} \delta s_\theta^2 + \Delta_V^{l_i} = 0 \,, \quad i = 1, 2, 3 \,, \\ \delta g_A^{l_i} &= \delta \bar{g}_Z \bar{g}_A^{l_i} + \Delta_A^{l_i} = 0 \,, \quad i = 1, 2, 3 \,, \\ \delta g_V^u &= \delta \bar{g}_Z \bar{g}_V^u + Q^u \delta s_\theta^2 + \Delta_V^u = 0 \,, \\ \delta g_A^u &= \delta \bar{g}_Z \bar{g}_A^u + \Delta_A^u = 0 \,, \\ \delta g_V^d &= \delta \bar{g}_Z \bar{g}_Q^d + Q^d \delta s_\theta^2 + \Delta_V^d = 0 \,, \\ \delta g_A^d &= \delta \bar{g}_Z \bar{g}_A^d + \Delta_A^d = 0 \,, \\ \delta g_V^{W,l_i} &= \frac{c_{ll} + 2c_{\varphi \ell_i}^{(3)} - c_{\varphi \ell_1}^{(3)} - c_{\varphi \ell_2}^{(3)}}{4\sqrt{2}G_F} = 0 \,, \quad i = 1, 2, 3 \,, \\ \delta g_V^{W,q} &= \frac{c_{ll} + c_{\varphi q}^{(3)} - c_{\varphi \ell_1}^{(3)} - c_{\varphi \ell_2}^{(3)}}{4\sqrt{2}G_F} = 0 \,, \end{split}$$

$$\begin{pmatrix} c_{\varphi\ell_{i}}^{(3)} \\ c_{\varphi\ell_{i}}^{(1)} \\ c_{\varphi\varphi_{i}}^{(-)} \\ c_{\varphiq}^{(-)} \\ c_{\varphiq}^{(3)} \\ c_{\varphiq}^{(3)} \\ c_{\varphiq} \\ c_{\varphiq} \\ c_{\varphiu} \\ c_{\varphid} \\ c_{\ell\ell} \end{pmatrix} = \begin{pmatrix} -\frac{1}{t_{W}} & -\frac{1}{4t_{W}^{2}} \\ 0 & -\frac{1}{4} \\ 0 & -\frac{1}{2} \\ \frac{1}{t_{W}} & \frac{1}{4s_{W}^{2}} - \frac{1}{6} \\ -\frac{1}{t_{W}} & -\frac{1}{4t_{W}^{2}} \\ 0 & \frac{1}{3} \\ 0 & -\frac{1}{6} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c_{\varphi WB} \\ c_{\varphi D} \end{pmatrix}$$

SMEFiT2.0: assumed LEP/SLD measurements were precise enough to set coupling shifts to zero → only 2 independent WCs

SMEFiT3.0: EWPOs implemented like the rest of LHC data → 16 independent WCs

Input	Observables
Z-pole EWPOs	$\begin{split} \Gamma_{Z}, \sigma_{\rm had}^{0}, R_{e}^{0}, R_{\mu}^{0}, R_{\tau}^{0}, A_{FB}^{0,e}, A_{FB}^{0,\mu}, A_{FB}^{0,\tau} \\ R_{b}^{0}, R_{c}^{0}, A_{FB}^{0,b}, A_{FB}^{0,c}, A_{b}, A_{c} \\ A_{\tau} \left(\mathcal{P}_{\tau} \right), A_{e} \left(\mathcal{P}_{\tau} \right) \\ A_{e} \left({\rm SLD} \right), A_{\mu} \left({\rm SLD} \right), A_{\tau} \left({\rm SLD} \right) \end{split}$
Bhabha scattering	$d\sigma/d\cos\theta~(n_{\rm dat}=21)$ $\sqrt{s}=189,192,196,200,202,205,207{\rm GeV}$
$lpha_{ m EW}$	$lpha_{ m EW}^{-1}(m_Z)$
W branching ratios	${f Br}(W o e u_e)$ ${f Br}(W o \mu u_\mu)$ ${f Br}(W o au u_ au)$

FCC-ee energy runs

Ratio of Uncertainties to HL - LHC + FCC - ee (240 GeV), $\mathcal{O}(\Lambda^{-2})$, Marginalised

FCC-ee and CEPC observables

Z-pole EWPOs ($\sqrt{s} = 91.2 \text{ GeV}$)									
0	δ/Δ	\mathcal{O}_i							
${\cal O}_i$	FCC-ee	CEPC							
$lpha(m_Z)^{-1}$ (×10 ³)	$\Delta = 2.7 \; (1.2)$	$\Delta = 17.8$							
$\Gamma_W ~({ m MeV})$	$\Delta=0.85~(0.3)$	$\Delta=1.8~(0.9)$							
Γ_Z (MeV)	$\Delta = 0.0028~(0.025)$	$\Delta = 0.005~(0.025)$							
$A_e~(imes 10^5)$	$\Delta=0.5~(2)$	$\Delta = 1.5$							
$A_{\mu} \left(imes 10^5 ight)$	$\Delta = 1.6~(2.2)$	$\Delta=3.0~(1.8)$							
$A_{ au} \left(imes 10^5 ight)$	$\Delta=0.35~(20)$	$\Delta = 1.2~(6.9)$							
$A_b(imes 10^5)$	$\Delta = 1.7~(21)$	$\Delta = 3~(21)$							
$A_c(imes 10^5)$	$\Delta = 14~(15)$	$\Delta=6~(30)$							
$\sigma_{ m had}^0~({ m pb})$	$\Delta=0.025~(4)$	$\Delta=0.05~(2)$							
$R_e(imes 10^3)$	$\delta = 0.0028~(0.3)$	$\delta = 0.003 \; (0.2)$							
$R_{\mu}(imes 10^3)$	$\delta = 0.0021~(0.05)$	$\delta = 0.003 \; (0.1)$							
$R_{ au} (imes 10^3)$	$\delta = 0.0021 \ (0.1)$	$\delta = 0.003 \; (0.1)$							
$R_b (imes 10^3)$	$\delta = 0.001 (0.3)$	$\delta = 0.005 \; (0.2)$							
$R_c(imes 10^3)$	$\delta = 0.011 \; (1.5)$	$\delta=0.02~(1)$							

	$e^+e^- ightarrow far{f}$											
	$\sqrt{s} = 24$	40 GeV	$\sqrt{s} = 365 \text{ GeV}$									
\mathcal{O}_i	$\Delta_{\exp} \mathcal{O}_i$ (FCC-ee)	$\Delta_{ ext{exp}}\mathcal{O}_i ext{ (CEPC)}$	$\Delta_{\exp} \mathcal{O}_i$ (FCC-ee)	$\left \begin{array}{c} \Delta_{\mathrm{exp}} \mathcal{O}_i \end{array} ight ext{(CEPC)} ight $								
$\sigma_{\rm tot}(e^+e^-)$ [fb]	2.29	1.62	2.74	4.68								
$A_{ m FB}(e^+e^-)$	$9.79\cdot 10^{-6}$	$6.92\cdot 10^{-6}$	$2.83\cdot 10^{-5}$	$4.83\cdot10^{-5}$								
$\sigma_{\rm tot}(\mu^+\mu^-)$ [fb]	0.405	0.287	0.48	0.82								
$A_{ m FB}(\mu^+\mu^-)$	$1.98\cdot 10^{-4}$	$1.397\cdot 10^{-4}$	$5.69 \cdot 10^{-4}$	$9.7\cdot10^{-4}$								
$\sigma_{\rm tot}(\tau^+\tau^-)$ [fb]	0.374	0.264	0.443	0.756								
$A_{\rm FB}(\tau^+\tau^-)$	$2.17\cdot 10^{-4}$	$1.53\cdot 10^{-4}$	$6.24 \cdot 10^{-4}$	0.00106								
$\sigma_{ m tot}(car{c})$ [fb]	0.088	0.062	0.102	0.175								
$A_{ m FB}(car c)$	0.000813	$5.74\cdot10^{-4}$	0.00238	0.00405								
$\sigma_{ m tot}(bar{b})$ [fb]	0.151	0.107	0.171	0.29								
$A_{ m FB}(bar{b})$	$4.86 \cdot 10^{-4}$	$3.44 \cdot 10^{-4}$	0.00142	0.00243								

	$e^+e^- \rightarrow W^+W^-$													
O_i	$\sqrt{s} = 16$	$61~{ m GeV}$	$\sqrt{s} = 24$	40 GeV	$\sqrt{s} = 365 { m GeV}$									
	δ_{exp} (FCC-ee)	$\delta_{ m exp}$ (CEPC)	δ_{exp} (FCC-ee)	$\delta_{ m exp}$ (CEPC)	δ_{exp} (FCC-ee)	$\delta_{ m exp}$ (CEPC)								
σ_{WW}	$1.36\cdot 10^{-4}$	$2.48 \cdot 10^{-4}$	$1.22 \cdot 10^{-4}$	$8.63 \cdot 10^{-5}$	$2.81 \cdot 10^{-4}$	$4.87\cdot10^{-4}$								
$ \text{ BR}_{W \to \ell_i \nu_i}$	$2.72\cdot 10^{-4}$	$4.95 \cdot 10^{-4}$	$2.44 \cdot 10^{-4}$	$1.73 \cdot 10^{-4}$	$5.63 \cdot 10^{-4}$	$9.75\cdot10^{-4}$								

Satistical (systematic) uncertainty in absolute unit (Δ) or relative to the central value (δ)

FCC-ee and CEPC observables

		$e^+e^- ightarrow Zh$			$ $ $e^+e^- \rightarrow h\nu\nu$							
	$\sqrt{s} = 2^4$	40 GeV	$\sqrt{s} = 36$	35 GeV		$\sqrt{s} = 24$	40 GeV	$\sqrt{s} = 365 \text{ GeV}$				
O_i	$\left \ \delta_{\exp} \mathcal{O}_i \ (ext{FCC-ee}) ight.$	$\delta_{\exp} \mathcal{O}_i$ (CEPC)	$\delta_{\exp} \mathcal{O}_i ext{ (FCC-ee)}$	$\delta_{\exp}\mathcal{O}_i \; (ext{CEPC})$	O_i	$\delta_{\exp} \mathcal{O}_i \text{ (FCC-ee)}$	$\delta_{ ext{exp}}\mathcal{O}_i ext{ (CEPC)}$	$\delta_{\exp} \mathcal{O}_i$ (FCC-ee)	$\left \ \delta_{\exp} \mathcal{O}_i \ (ext{CEPC}) ight.$			
σ_{Zh}	0.0035	0.0026	0.0064	0.014	$\sigma_{h\nu\nu} \times \mathrm{BR}_{b\bar{b}}$	0.0219	0.0159	0.0064	0.011			
$\sigma_{Zh} imes \mathrm{BR}_{b\bar{b}}$	0.0021	0.0014	0.0035	0.009	$\sigma_{h\nu\nu}\times \mathrm{BR}_{c\bar{c}}$	-	-	0.0707	0.16			
$\sigma_{Zh} \times \mathrm{BR}_{c\bar{c}}$	0.0156	0.0202	0.046	0.088	$\sigma_{h\nu\nu} \times \mathrm{BR}_{gg}$	-	-	0.0318	0.045			
$\sigma_{Zh} imes \mathrm{BR}_{gg}$	0.0134	0.0081	0.0247	0.034	$\sigma_{h\nu\nu} \times \mathrm{BR}_{ZZ}$	-	-	0.0707	0.21			
$\sigma_{Zh} \times BR_{ZZ}$	0.0311	0.0417	0.0849	0.2	$\sigma_{h\nu\nu} \times \mathrm{BR}_{WW}$	-	-	0.0255	0.044			
$\sigma_{Zh} \times \mathrm{BR}_{WW}$	0.0085	0.0053	0.0184	0.028	$\sigma_{h\nu\nu} \times \mathrm{BR}_{\tau^+\tau^-}$	-	-	0.0566	0.042			
$\sigma_{Zh} imes \mathrm{BR}_{\tau^+ \tau^-}$	0.0064	0.0042	0.0127	0.021	$\sigma_{h\nu\nu} \times \mathrm{BR}_{\gamma\gamma}$	-	-	0.156	0.16			
$\sigma_{Zh} imes \mathrm{BR}_{\gamma\gamma}$	0.0636	0.0302	0.127	0.11	-	• •	-	•	•			
$\sigma_{Zh} \times \mathrm{BR}_{\gamma Z}$	0.12	0.085	-	-								

Satistical (systematic) uncertainty in absolute unit (Δ) or relative to the central value (δ)