LFC24 Fundamental Interactions at Future Colliders

September 17, 2024

Present and Future of Electroweak Precision Tests

University of Granada

Introduction

- The Standard Model is the most successful theory we have in particle physics: To a large extent this is known thanks to the Electroweak Precision Tests (Comparison of SM with the so-called Electroweak Precision Observables)
- Electroweak Precision Observables (EWPO)
 - Traditionally EWPO refers to a set of observables that, interpreted within the SM, allows the determination of the Z & W properties
 - Their measurements, mostly from LEP/SLD but also Tevatron/LHC, are some of the most precise we have, in many cases at per mile level
- Enough to test the quantum structure of the SM to the 2-loop level!
- The importance of precision: The more we have, the farther we can go in testing the limits of the Standard Model → Indirect search of New Physics

Separate SM vs NP: Precision means both experimental and theoretical!

Introduction

Precision means both experimental and theoretical!

Present and Future of Electroweak Precision Tests September 17, 2024

Status of Electroweak Precision Observables

Jorge de Blas - U. of Granada

Z pole observables: mainly coming from the LEP/SLC era

• Z pole observables: mainly coming from the LEP/SLC era

Obtained via low-angle Bhabha scattering (known to 0.061% during LEP era)

- Recently revisited using updated (more accurate) prediction of Bhabha process:
 - ✓ New corrections decrease the Bhabha cross section by 0.048%

(Uncertainty 0.037%) P. Janot, S. Jadach, Phys.Lett.B 803 (2020) 135319

 $\sigma_{Bhabha} \searrow \Rightarrow L \nearrow \Rightarrow Measured \sigma_{had} \searrow$

• Z pole observables: mainly coming from the LEP/SLC era

$$M_{Z}, \Gamma_{Z}, \sigma_{had}^{0}, \sin^{2}\theta_{Eff}^{lept}, P_{T}^{pot}, A_{f}, A_{FB}^{0,f}, R_{f}^{0} \qquad (LEP/SLC) \\ 0.002-O(1)\% \qquad (LEP/SLC) \qquad (LEP/SLC) \qquad (LEP/SLC) \qquad (LEP/SLC) \\ 0.002-O(1)\% \qquad (LEP/SLC) \qquad (LEP/SLC)$$

The updated results remove past tension with SM in the value of the effective # of $v : N_v$

$$R_{ ext{inv}}^0 = \left(rac{12\pi R_\ell^0}{\sigma_{ ext{had}}^0 M_Z^2}
ight)^{rac{1}{2}} - R_\ell^0 - (3+\delta_ au) = N_
u \left(rac{\Gamma_{
uar
u}}{\Gamma_{\ell\ell}}
ight)_{ ext{SM}}$$

 $N_{
u} = 2.9840 \pm 0.0082 \ \ (\sim 2\sigma) \longrightarrow N_{
u} = 2.9963 \pm 0.0074 \ \ (0.5\sigma)$

Z-pole obs.

• Z pole observables: Heavy flavor measurements from LEP/SLC

$M_Z, \ \Gamma_Z, \ \sigma_{ m had}^0, \ \sin^2 heta_{ m Eff}^{ m lept}, \ P_{ au}^{ m pol}, \ A_f, \ A_{FB}^{0,f}, \ R_f^0$ (LEP/ 0.002-									
LE	P/SLD combination	$R_{\rm b}^0$	$R_{ m c}^0$	$A_{ m FB}^{ m 0,b}$	$A_{ m FB}^{0, m c}$	\mathcal{A}_{b}	$\mathcal{A}_{ ext{c}}$		
$R_{\rm b}^0$	0.21629 ± 0.00066	1.00							
$R_{ m c}^0$	0.1721 ± 0.0030	-0.18	1.00		0.3%, 2	-5% Pre	cision		
$A_{ m FB}^{0,{ m b}}$	0.0996 ± 0.0016	-0.10	0.04	1.00					
$A_{ m FB}^{0, m c}$	0.0707 ± 0.0035	0.07	-0.06	0.15	1.00				
\mathcal{A}_{b}	0.923 ± 0.020	-0.08	0.04	0.06	-0.02	1.00			
$\mathcal{A}_{ ext{c}}$	0.670 ± 0.027	0.04	-0.06	0.01	0.04	0.11	1.00		

• A_{FB}^b also revisited recently, including:

D. D'Enterria, C. Yan, arXiv: 2011.00530 [hep-ph]

- ✓ Reassessment of QCD uncertainties using modern Parton showers (Pythia 8)
- ✓ NNLO (2-loop) massive b-quark corrections

 $A_{
m FB}^{0,b} = 0.0992 \pm 0.0016 \longrightarrow 0.0996 \pm 0.0016$

(Stat dominated)

✓ New corrections tend to reduce the discrepancy with the SM

 $\sin^2 \theta_{eff}^{I}$

- Effective weak mixing angle at hadron colliders:
 - ✓ LEP/SLC determination from fermion asymmetries A_f/A_{FB}^f :

 $\left. \sin^2 heta_{ ext{eff}}^{ ext{lept}} \right|_{ ext{LEP+SLC}} = 0.23151 \pm 0.00016$ 0.07% Precision ✓ Hadron colliders can measure same quantity via A_{FB} in Drell-Yan for $e^+e^$ and $\mu^+\mu^-$ final states, with invariant dilepton masses around M_Z LEP + SLD: $A_{FR}^{0,b}$ 0.23221 ± 0.00029 SLD: A, 0.23098 ± 0.00026 CDF 2 TeV 0.23221 ± 0.00046 D0 2 TeV 0.23095 ± 0.00040 ATLAS 7 TeV 0.23080 ± 0.00120 LHCb 7+8 TeV 0.23142 ± 0.00106 CMS 8 TeV 0.23101 ± 0.00053 **ATLAS/CMS** ATLAS 8 TeV 0.23140 ± 0.00036 measurements with Preliminary uncertainty comparable CMS 13 TeV 0.23157 ± 0.00031 to individual LEP/SLC Preliminary 0.232 0.229 0.23 0.231 0.233 0.234 (+ consistent with each other) $\sin^2 \theta_{eff}^l$

 $\sin^2 \theta_{eff}^{I}$

- Effective weak mixing angle at hadron colliders:
 - ✓ LEP/SLC determination from fermion asymmetries A_f/A_{FB}^f :

Electroweak precision observables: W properties

Experimental measurements of M_W and Γ_W :

September 17, 2024

Electroweak precision observables: W properties

Experimental measurements of W Branching ratios: LEP2 vs CMS

$$M_W, \ \Gamma_W, \ \mathrm{BR}_{W \to \ell \nu}$$

W obs. (LEP2/Hadron Coll.) 0.02-0(1)%

Similar systematics but CMS 3-10 times more precise statistically \rightarrow 1.5 x better for e/µ, similar for τ

CMS collaboration, arXiv: 2201.07861 [hep-ex]

Present and Future of Electroweak Precision Tests September 17, 2024

EWPO: Status of SM predictions

• Standard Model inputs: α scheme

 $\left\{G_F, \ lpha(M_Z^2), \ lpha_s(M_Z^2), \ M_Z, \ M_H, \ m_t \right\}$

• Fermi constant (G_F) and $\alpha(0)$ known with much higher precision than any EWPO such that their uncertainty can be neglected in EW precision tests.

EWPO: Status of SM predictions

• Standard Model inputs: α scheme

 $\left\{G_F, \ \alpha(M_Z^2), \ \alpha_s(M_Z^2), \ M_Z, \ M_H, \ m_t\right\}$

• Fermi constant (G_F) and $\alpha(0)$ known with much higher precision than any EWPO such that their uncertainty can be neglected in EW precision tests.

Comparison of EWPO with SM predictions (EW fit) is overconstrained

EWPO: Status of SM predictions

• State-of-the-art of SM theory calculations of EWPO:

✓
$$\Gamma_W$$
 : Only EW one loop
D.Y. Bardin, P.K. Khristova, O. Fedorenko, Nucl. Phys B197 (1982) 1-44
D.Y. Bardin, S. Riemann, T. Riemann, Z. Phys C32 (1986) 121-125
✓ M_W : Full EW 2-loop corr. + leading 3-loop & some 4-loop
M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev D69 (2004) 053006
✓ $\sin^2 \theta_{\rm Eff}^f$ (light ferm): Full EW 2-loop corr. + leading higher order
M. Awramik, M. Czakon, A. Freitas, JHEP 0611 (2006) 048
M. Awramik, M. Czakon, A. Freitas, B.A. Kniehl, Nucl. Phys. B813 (2009) 174-187
✓ Γ_Z^f : Full 2-loop EW corr. + leading higher order
I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, J. Usovitsch, Phys. Lett. B 783 (2018) 86-94
✓ $\sin^2 \theta_{\rm Eff}^b$: Full 2-loop EW corr. + leading higher order
I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, J. Usovitsch, Phys. Lett. B 762 (2016) 184-189

✓ Leading 3-loop EW fermionic corrections L. Cheng, A. Freitas, JHEP 07 (2020) 210

• Experimental vs. Theoretical uncertainties:

	$M_{ m W}$	$\Gamma_{\rm Z}$	$\sigma_{ m had}^0$	R _b	$\sin^2 heta_{ m eff}^\ell$
Exp. error	15 MeV	2.3 MeV	37 pb	6.6×10^{-4}	1.6×10^{-4}
Theory error	4 MeV	0.5 MeV	6 pb	1.5×10^{-4}	$0.5 imes 10^{-4}$

A. Freitas, PoS(LL2014)050 [arXiv: 1406.6980]

September 17, 2024

The Standard Model EW fit

From*: JB et al. , Phys. Rev. D 106, 033003 (2022) JB, M. Pierini, L. Reina, L. Silvestrini, Phys. Rev. Lett. 129, 271801 (2022)

*Do not include a few of the latest updates discussed before but impact in the results is small

• Reported here using the observables assuming Lepton Flavor Universality

Global SM EW fit (standard scenario)									
	Measurement	Posterior	Individual Prediction	1D Pull	nD Pull	l			
$\alpha_s(M_Z^2)$	0.1177 ± 0.0010	0.11792 ± 0.00094	0.1198 ± 0.0028	-0.7		_			
$\Delta \alpha_{ m had}^{(5)}(M_Z^2)$	0.02766 ± 0.00010	0.027627 ± 0.000096	0.02717 ± 0.00037	1.3					
M_Z [GeV]	91.1875 ± 0.0021	91.1883 ± 0.0021	91.2047 ± 0.0088	-1.9					
$m_t \; [\text{GeV}]$	172.58 ± 0.45	172.75 ± 0.44	176.2 ± 2.0	-1.8					
$m_H \; [\text{GeV}]$	125.21 ± 0.12	125.21 ± 0.12	108.3 ± 11.7	1.3					
M_W [GeV]	80.379 ± 0.012	80.3591 ± 0.0052	80.3545 ± 0.0057	1.8		_			
$\Gamma_W [\text{GeV}]$	2.085 ± 0.042	2.08827 ± 0.00055	2.08829 ± 0.00056	-0.1		_			
$\mathrm{BR}_{W \to \ell \bar{\nu}_{\ell}}$	0.10860 ± 0.00090	0.108381 ± 0.000022	0.108380 ± 0.000022	0.2		_			
$\sin^2 \theta_{\rm eff}^{ m lept}(Q_{\rm FB}^{ m had})$	0.2324 ± 0.0012	0.231509 ± 0.000056	0.231506 ± 0.000056	0.7					
$P_{\tau}^{\rm pol} = \mathcal{A}_{\ell}$	0.1465 ± 0.0033	0.14712 ± 0.00044	0.14713 ± 0.00045	-0.2		_			
		[0.14625, 0.14799]	$\left[0.14626, 0.14801 ight]$						
$\Gamma_Z \ [\text{GeV}]$	2.4955 ± 0.0023	2.49443 ± 0.00065	2.49423 ± 0.00069	0.5		Ē			
σ_h^0 [nb]	41.480 ± 0.033	41.4908 ± 0.0076	41.4927 ± 0.0079	-0.4	1.0				
R^0_ℓ	20.767 ± 0.025	20.7493 ± 0.0080	20.7462 ± 0.0087	0.8		h			
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.016234 ± 0.000098	0.016225 ± 0.000097	0.9					
\mathcal{A}_{ℓ} (SLD)	0.1513 ± 0.0021	0.14712 ± 0.00044	0.14713 ± 0.00046	1.9		[
R_b^0	0.21629 ± 0.00066	0.215878 ± 0.000100	0.21587 ± 0.00010	0.6					
R_c^0	0.1721 ± 0.0030	0.172205 ± 0.000054	0.172206 ± 0.000053	0.0					
$A_{ m FB}^{0,b}$	0.0996 ± 0.0016	0.10314 ± 0.00031	0.10315 ± 0.00033	-2.2	1.3				
$A_{ m FB}^{ar 0, ar c}$	0.0707 ± 0.0035	0.07369 ± 0.00023	0.07370 ± 0.00024	-0.9					
$\mathcal{A}_b^{\top \mathcal{D}}$	0.923 ± 0.020	0.934738 ± 0.000040	0.934739 ± 0.000040	-0.6					
\mathcal{A}_{c}	0.670 ± 0.027	0.66782 ± 0.00022	0.66783 ± 0.00022	0.0					
\mathcal{A}_s	0.895 ± 0.091	0.935651 ± 0.000040	0.935651 ± 0.000040	-0.4		_			
$\sin^2 \theta_{\rm eff}^{\rm lept}$ (HC)	0.23143 ± 0.00025	0.231509 ± 0.000056	0.231512 ± 0.000057	-0.3		-			
R_{uc}	0.1660 ± 0.0090	0.172227 ± 0.000032	0.172228 ± 0.000032	-0.7		_			

"Posterior": The full fit results

"Indirect/Prediction":

Drop each (set of correlated) observable(s) at a time → fit → predict the removed observable

"1D pull": ndividual pull for each observable

"nD pull":

Global pull for sets of correlated observables

Jorge de Blas - U. of Granada

(Excluding M_W^{CDF})

• Tensions in the Standard Model electroweak fit (Excluding the M_W^{CDF}):

September 17, 2024

• Tensions in the Standard Model electroweak fit:

Present and Future of Electroweak Precision Tests September 17, 2024

Oblique STU Electroweak fit

 New physics contributing only to gauge boson self-energies. Typically referred as "oblique" corrections (S, T, U)

Oblique STU Electroweak fit

 New physics contributing only to gauge boson self-energies. Typically referred as "oblique" corrections (S, T, U)

The SMEFT global fit

- Example: CP-even + U(3)⁵ flavor symmetric fit (Ignoring CDFW mass)
 - ► Fit to EWPO+diBoson+Higgs+Top → Closed fit with 32 operators (Warsaw)

Electroweak Precision Physics At Future Colliders

Jorge de Blas - U. of Granada

Accuracy/Intensity Frontier

Indirect sensitivity to new physics

Present and Future of Electroweak Precision Tests September 17, 2024

EW precision at future e⁺e⁻ colliders

EW precision at future e⁺e⁻ colliders

September 17, 2024

EW precision at future e+e- colliders

- More than Higgs factories: Future e⁺e⁻ colliders will also help us improve our knowledge of the EW interactions:
 - Improved Z pole run:
 - ► LEP/SLC: ~ $10^7 Z \rightarrow O(0.1-1\%)$
 - FCCee/CEPC: 10¹² Z
 - ILC (GigaZ): 10⁹ Z (with polarization)

Z-pole EWPO:

 $M_Z, \ \Gamma_Z, \ \sigma_{
m had}^0, \ \sin^2 heta_{
m Eff}^{
m lept}, \ P_{ au}^{
m pol}, \ A_f, \ A_{FB}^{0,f}, \ R_f^0$

Ζ

• Z-pole measurements are also possible during the Higgs factory phase ($\sqrt{s} \sim 250$ GeV) via radiative return to the Z resonance

$$e^+e^- \to \gamma Z$$

ILC 250 with 2 ab⁻¹: 77 (12) million hadronic (leptonic) Zs 5 (100) times more statistics than LEP (SLC)!

K. Fuji et al. , arXiv: 1908.11299 [hep-ex] T. Mizuno, K. Fuji, J. Tian, arXiv: 2203.07944 [hep-ph]

EW precision at future e⁺e⁻ colliders

- More than Higgs factories: Future e⁺e⁻ colliders will also help us improve our knowledge of the EW interactions:
 - ✓ WW production at 161 GeV and above: W mass and width, BRs, aTGCs, ...

√s [GeV]

EW precision at future e⁺e⁻ colliders: Experiment

Quantity	current	ILC250	ILC-GigaZ	FCC-ee ^{2IPs}	CEPC	CLIC380
$\Delta \alpha(m_Z)^{-1} \; (\times 10^3)$	17.8*	17.8*		3.8 (1.2)	17.8*	
$\Delta m_W \; ({ m MeV})$	12^{*}	0.5(2.4)		0.25~(0.3)	0.35~(0.3)	
$\Delta m_Z \; ({\rm MeV})$	2.1^{*}	0.7~(0.2)	0.2	0.004~(0.1)	0.005~(0.1)	2.1^{*}
$\Delta m_H \; ({\rm MeV})$	170^{*}	14		2.5(2)	5.9	78
$\Delta\Gamma_W ({\rm MeV})$	42*	2		$1.2 \ (0.3)$	1.8 (0.9)	
$\Delta\Gamma_Z \ ({\rm MeV})$	2.3^{*}	1.5 (0.2)	0.12	$0.004 \ (0.025)$	$0.005 \ (0.025)$	2.3^{*}
$\Delta A_e \ (\times 10^5)$	190*	14(4.5)	1.5(8)	0.7(2)	1.5	64
$\Delta A_{\mu} \; (\times 10^5)$	1500^{*}	82 (4.5)	3(8)	2.3(2.2)	3.0(1.8)	400
$\Delta A_{\tau} (\times 10^5)$	400*	86~(4.5)	3(8)	0.5~(20)	1.2 (6.9)	570
$\Delta A_b \; (\times 10^5)$	2000*	53 (35)	9(50)	2.4(21)	3(21)	380
$\Delta A_c \; (\times 10^5)$	2700^{*}	140 (25)	20(37)	20 (15)	6(30)	200
$\Delta \sigma_{\rm had}^0 (\rm pb)$	37*			0.035(4)	0.05 (2)	37*
$\delta R_e \; (\times 10^3)$	2.4^{*}	0.5~(1.0)	$0.2 \ (0.5)$	0.004~(0.3)	0.003~(0.2)	2.7
$\delta R_{\mu} \; (\times 10^3)$	1.6^{*}	0.5~(1.0)	$0.2 \ (0.2)$	$0.003\ (0.05)$	0.003~(0.1)	2.7
$\delta R_{\tau} \; (\times 10^3)$	2.2^{*}	0.6(1.0)	0.2 (0.4)	0.003~(0.1)	0.003~(0.1)	6
$\delta R_b \; (\times 10^3)$	3.0^{*}	0.4(1.0)	0.04 (0.7)	$0.0014 \ (< 0.3)$	0.005~(0.2)	1.8
$\delta R_c(imes 10^3)$	17^{*}	0.6(5.0)	0.2(3.0)	0.015(1.5)	0.02(1)	5.6

Improvement ranges from 1 to 2 orders of magnitude for the most relevant observables of the EW fit

Snowmass 2021

EW precision at future e⁺e⁻ colliders: Experiment

Quantity	Current	HL-LHC	FCC-ee	CEPC	ILC		CLIC	
			(2IPs)		Giga-Z	$250 { m ~GeV}$	Giga-Z	$380 {\rm GeV}$
$\delta m_{\rm top} [{\rm MeV}]$	$\sim 500^{a})$	$\sim 400^{a})$	20 ^b)			17 ^{b)}		20-22 ^{b)}
$\delta M_Z \; [{ m MeV}]$	2.1	_	0.1	0.5				
$\delta\Gamma_Z [{ m MeV}]$	2.3	_	0.1	0.5	1		1	_
$\delta\Gamma_{Z \to \text{had}} \text{ [MeV]}$	2.0	_	_		0.7		0.7	
$\delta \sigma_{ m had}^0$ [pb]	37	_	4	5				
$\delta M_W \; [{ m MeV}]$	12	7	0.7	$1.0 (2-3)^{c}$		2.4 d)		2.5
$\delta\Gamma_W$ [MeV]	42	-	1.5	3	_	_	_	_

Example: FCCee	(4 IPs)
----------------	---------

$\Delta\Gamma_Z$:	$2300~{ m KeV}$	$\longrightarrow 25 { m ~KeV}$	$(4(ext{stat}) igoplus 25(ext{sys}))$
ΔM_W :	$15 { m MeV}$	$\longrightarrow 0.5 \; { m MeV}$	$(0.25(ext{stat}) \bigoplus 0.3(ext{sys}))$
$\Delta \sin^2 heta_{ m eff}^\ell(imes 10^6):$	160	$\longrightarrow 3$	$(2(ext{stat}) igoplus 2.4(ext{sys}))$
$\Delta A^{b^{}}_{FB}(imes 10^4):$	16	$\longrightarrow 1-3$	$(0.02(ext{stat}) \bigoplus 1-3(ext{sys}))$

Tera Z: Typically Stats < Sys

$\delta A_{\rm FB}^c \ [10^{-4}]$	500	—	80 J)	30 7)				—
$\delta R_e \ [10^{-4}]$	24	_	3	2.4	5.4	11	4.2	27
$\delta R_{\mu} \ [10^{-4}]$	16	_	0.5	1	2.8	11	2.2	27
$\delta R_{\tau} \ [10^{-4}]$	22	—	1	1.5	4.5	12	4.3	60
$\delta R_b \ [10^{-4}]$	31	_	2	2	7	11	7	18
$\delta R_c \ [10^{-4}]$	170	_	10	10	30	50	23	56

Improvement ranges from 1 to 2 orders of magnitude for the most relevant observables of the EW fit

EW precision at future e⁺e⁻ colliders: Experiment

• Consistency tests of the EW sector: HL-LHC vs. Giga Z vs. Tera Z

Theory Challenges at the precision frontier

- Proper interpretation of precision measurements require precision theory
 - The goal of improved precision measurements is to learn about new physics
 We need to distinguish between new physics (signal) and SM (background)
- We need to have very good control of the background so its uncertainties do not affect the new physics interpretation

experimental accuracy intrinsic th. unc. parametric unc.									
	current	ILC	FCC-ee	current	prospect	prospect	source		
$\Delta M_{ m Z}[{ m MeV}]$	2.1		0.1						
$\Delta \Gamma_{\rm Z} [{ m MeV}]$	2.3	1	0.1	0.4	0.15	0.1	$lpha_{ m s}$		
$\Delta \sin^2 heta_{ m eff}^\ell [10^{-5}]$	23	1.3	0.6	4.5	1.5	2(1)	$\Delta lpha_{ m had}$		
$\Delta R_{ m b} [10^{-5}]$	66	14	6	11	5	1	$lpha_{ m s}$		
$\Delta R_\ell [10^{-3}]$	25	3	1	6	1.5	1.3	$lpha_{ m s}$		
A. Freitas et al., arXiv: 1906.05379 [hep-ph]									

- Theory challenges: Future projections assume full EW & QCD-EW 3-loop + leading 4 loop (Yt enhanced) are computed by the time of future e+e-
 - \checkmark Enough only to lower theory uncertainty to the experimental level

Theory Challenges at the precision frontier

Precision Experiment vs. Theory: Impact of SM theory uncertainties

- Even accounting for future progress, SM theory uncertainties will have an impact on BSM interpretation of EWPO
- Parametric uncertainties expected to have similar effect ($\alpha_{em} \rightarrow A_l \rightarrow S$ par.)

Jorge de Blas - U. of Granada

$$\begin{array}{l} \text{Effective} \\ \text{EW couplings} \end{array} \quad \Gamma_{Z \to e^+ e^-} = \frac{\alpha \, M_Z}{6 \sin^2 \theta_w \cos^2 \theta_w} (|g_{Zee,L}^{\text{eff}}|^2 + |g_{Zee,R}^{\text{eff}}|^2), \qquad A_e = \frac{|g_{Zee,L}^{\text{eff}}|^2 - |g_{Zee,R}^{\text{eff}}|^2}{|g_{Zee,L}^{\text{eff}}|^2 + |g_{Zee,R}^{\text{eff}}|^2}. \end{array}$$

ain $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{q} = \Delta g_{Z,L}^{u} V_{CKM} - V_{CKM} \Delta g_{Z,L}^{q}$, (14) ar $\Delta g_{W,L}^{u} = \Delta g_{W,L}^{u} - \Delta g_{W,L}^{u}$, (14) ar $\Delta g_{W,L}^{u} = \Delta g_{W,L}^{u} - \Delta g_{W,L}^{u}$, (14) ar $\Delta g_{W,L}^{u} = \Delta g_{W,L}^{u} - \Delta g_{W,L}^{u}$, (14) ar $\Delta g_{W,L}^{u} = \Delta g_{W,L}^{u} - \Delta g_{W,L}^{u}$, (14) ar $\Delta g_{W,L}^{u} = \Delta g_{W,L}^{u}$, (14) ar $\Delta g_{W,L}^{u}$

/ff couplings

Electroweak Precision Test at High-E Future Colliders

 Continuing with the interpretation within the EFT, the sensitivity to BSM effects benefits not only from experimental precision but also from access to high-E:

Jorge de Blas - U. of Granada

Present and Future of Electroweak Precision Tests September 17, 2024

Electroweak Precision Test at High-E Future Colliders

 Within the context of Future Lepton Colliders, this is of special relevance for high-energy (multi-TeV) muon colliders

S. Chen et al., JHEP 05 (2022) 180

Jorge de Blas - U. of Granada

Summary

- EW precision tests have been traditionally a powerful tool to validate the SM description of electroweak interactions and constrain new physics
- Current precision established the need for precision calculations, testing the SM to the level of quantum corrections (2-loops)
- While the SM global EW fit is "dominated" by measurements at previous lepton colliders (LEP/SLD), it also receives important information from hadron colliders (Tevatron, LHC):
 - ✓ Some input parameters can only be measured there (Top and Higgs masses)
 - $\checkmark\,$ In some cases better precision: W mass
 - ✓ Plus some measurements of the neutral current are starting to compete with the LEP/SLC precision
- (If we ignore M_W from CDF) No statistically significant deviation in the SM EW fit, though interesting tensions still present (A_{FB}^b)
 - ✓ Strong constraints on new physics affecting the EW sector!!!
 (Sensitivity to new physics ~few TeV, depending on new physics couplings)

Summary

- Future e⁺e⁻ colliders like any of the proposed Higgs factories would be capable of significantly improving our knowledge of the EW sector
 - ✓ Different ways of improving the precision of EWPO:
 - Run at Z-pole (Tera Z/Giga Z)
 - Measurements at Higgs factory run (250 GeV) via radiative return to Z
 - ✓ Higgs factory runs (250 and 350 GeV) → Improvement in W and Top-quark mass precision
- Typically, one order of magnitude improvement in sensitivity to new physics...
- ...But requires a substantial improvement in SM theory calculations to match the expected experimental precision of EWPO
 - ✓ Challenging but needed so SM theory is not a bottleneck for new physics interpretations
- High Energy Future Colliders (e.g. Muon colliders) also benefit of the high-E reach to provide other interesting EW measurements beyond EWPO, and strong BSM sensitivity without relying crucially on EXP precision

Jorge de Blas - U. of Granada

Electroweak precision observables at the HL-LHC

ATLAS 2024 (CT18): $m_W = 80366.5 \pm 9.8 \text{ (stat.)} \pm 12.5 \text{ (syst.)} \text{ MeV}$

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	u_{T}	Lumi	Γ_W	PS
p_{T}^{ℓ}	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1	0.1	1.5
m _T	24.4	11.4	21.6	11.7	4.7	4.1	4.9	6.7	6.0	11.4	2.5	0.2	7.0
Combined	15.9	9.8	12.5	5.7	3.7	2.0	5.4	6.0	5.4	2.3	1.3	0.1	2.3

Final precision will largely depend on PDFs and amount of data

D0 (Run 2) Phys. Rev. Lett. 108 (2012) m_w = 80375 ± 23 MeV

Effective weak mixing angle at HL-LHC

Electroweak precision observables at the HL-LHC

• **EWPO** at HL-LHC: Impact on EWPO fit

Oblique parameters STU

	Result	Corre	lation Ma	Precision at HL-LHC	
S	0.04 ± 0.10	1.00			0.09
T	0.08 ± 0.12	0.90	1.00		0.12
U	0.00 ± 0.09	-0.62	-0.84	1.00	0.08
S	0.04 ± 0.08	1.00			0.06
T	0.08 ± 0.06	0.90	1.00		0.05
(U=0)					

arXiv: 19

0.4 - All

Electroweak Precision Tests ber 17, 2024

