Higgs Physics Beyond the LHC Era

Giuliano Panico

Università di Firenze and INFN Firenze

LFC24 — Trieste — 17/9/2024

Fundamental physics at colliders

The main goal of the collider program is to deepen our knowledge of fundamental physics

In practical terms, this means **testing the SM**

looking for its possible failures -----> evidence of New Physics (BSM)

Testing the SM

<u>Complementarity</u>

devising different strategies to test the SM predictions and to cover different types of new physics

Testing the SM

<u>Complementarity</u>

devising different strategies to test the SM predictions and to cover different types of new physics

The **Higgs** plays a major role in testing the SM and looking for new physics

Higgs properties

Higgs "pole" measurements

- ▶ Mass, width
- Spin / CP properties
- Yukawas, couplings to gauge bosons

Higgs properties

Higgs "pole" measurements

- Mass, width
- Spin / CP properties
- Yukawas, couplings to gauge bosons

High-energy Higgs dynamics

- Restoration of EW symmetry / Goldstone equivalence theorem
- Non-linear couplings

Higgs properties

Higgs "pole" measurements

- Mass, width
- Spin / CP properties
- Yukawas, couplings to gauge bosons

High-energy Higgs dynamics

- Restoration of EW symmetry / Goldstone equivalence theorem
- Non-linear couplings

Higgs potential

Higgs self-couplings

Relevance of Higgs properties

The Higgs is connected to the **most fundamental** aspects of the SM

Relevance of Higgs couplings

How to describe new physics?

Various approaches can be used to describe the effect of new physics on the Higgs dynamics

- Deviations in single couplings (i.e. κ -framework)
- ♦ EFT parametrization
- Explicit new-physics models
 (eg. Higgs portal models, extended Higgs sectors ...)

BO		
D		
in.		
PJ		
b C		
PDC		
D		

stronger correlations

Correlations in Higgs couplings

The EFT approach (and also explicit new-physics models) predicts correlations between different Higgs couplings

Higgs "pole" measurements

Low-energy e⁺e⁻ colliders can test several Higgs "pole" properties

88.000		
Coupling	HL-LHC	FCC-ee $(240-365 \text{GeV})$ 2 IPs / 4 IPs
κ_W [%]	1.5^{*}	$0.43 \ / \ 0.33$
$\kappa_Z[\%]$	1.3^{*}	0.17 / 0.14
$\kappa_{g}[\%]$	2^*	0.90 / 0.77
κ_{γ} [%]	1.6^{*}	1.3 / 1.2
$\kappa_{Z\gamma}$ [%]	10^{*}	10 / 10
κ_c [%]	—	1.3 / 1.1
$\kappa_t [\%]$	3.2^{*}	3.1 / 3.1
$\kappa_b ~[\%]$	2.5^{*}	$0.64 \ / \ 0.56$
κ_{μ} [%]	4.4*	3.9 / 3.7
$\kappa_{ au}$ [%]	1.6^{*}	$0.66 \ / \ 0.55$
$BR_{inv} (<\%, 95\% CL)$	1.9^{*}	$0.20 \ / \ 0.15$
$BR_{unt} (<\%, 95\% CL)$	4*	1.0 / 0.88

Higgs coupling sensitivity

[Table from mid-term report, from C. Grojean, Corfu '24]

- Model-independent measurement of $\lim_{x \to \infty} \delta_{\text{SM}}^{K_X}$ ar Higgs couplings
- Significant improvement with respect to HL-LHC in $g_{HZZ}^{eff}, g_{HWW}^{eff}, g_{Hgg}^{eff}, g_{Hbb}^{eff}, g_{Hcc}^{eff}, g_{H\tau\tau}^{eff}$

$$w^2/f^2$$
 & $m_{\rm NP} = g_{\rm NP}f)$

 $\sim 3\,{
m MeV}$

111999 oo abiiii 9 poilpini 110					
Coupling	HL-LHC	FCC-ee $(240-365\mathrm{GeV})$			
		2 IPs / 4 IPs			
κ_W [%]	1.5^{*}	$0.43 \ / \ 0.33$			
$\kappa_Z[\%]$	1.3^{*}	0.17 / 0.14			
$\kappa_{g}[\%]$	2^*	$0.90 \ / \ 0.77$			
κ_{γ} [%]	1.6^{*}	1.3 / 1.2 -			
$\kappa_{Z\gamma}$ [%]	10^{*}	10 / 10			
κ_c [%]	—	1.3 / 1.1			
κ_t [%]	3.2^{*}	3.1 / 3.1			
κ_b [%]	2.5^{*}	$0.64 \ / \ 0.56$			
κ_{μ} [%]	4.4^{*}	3.9 / 3.7			
$\kappa_{ au}$ [%]	1.6^{*}	$0.66 \ / \ 0.55$			
$BR_{inv} (<\%, 95\% CL)$	1.9^{*}	0.20 / 0.15			
BR _{unt} ($<\%$, 95% CL)	4*	1.0 / 0.88			

Higgs coupling sensitivity

[Table from mid-term report, from C. Grojean, Corfu '24]

- Significant improvement with respect to HL-LHC in $g_{HZZ}^{eff}, g_{HWW}^{eff}, g_{Hgg}^{eff}, g_{Hbb}^{eff}, g_{Hcc}^{eff}, g_{H\tau\tau}^{eff}$
- Exception: decay channels with low BR

 $\sim 3\,{
m MeV}$

 v^2/f^2 & $m_{\rm NP} = g_{\rm NP}f$)

 $g_{H\gamma\gamma}^{e\!f\!f},\ g_{H\mu\mu}^{e\!f\!f},\ g_{HZ\gamma}^{e\!f\!f}$

Muon collider

A muon collider can improve the determination of some couplings

- improvement in $g_{H\gamma\gamma}^{e\!f\!f}$ (and $g_{HZ\gamma}^{e\!f\!f}$) with 10 TeV (and 125 GeV) run
- improvement in $g_{H\mu\mu}^{eff}$ with 10 TeV run; excellent determination with 125 GeV run

High-energy hadron collider

High-energy hadron collider

FCC-hh can test $g_{H\gamma\gamma}^{e\!f\!f}, g_{H\mu\mu}^{e\!f\!f}, g_{HZ\gamma}^{e\!f\!f}$ with high precision

FCC-hh can improve the measurement of the top Yukawa $g_{Htt}^{eff} \rightarrow 1\%$

(improvement also possible at HE-LHC and CLIC 3TeV)

The electron Yukawa

Low-energy e⁺e⁻ colliders could also access the **electron Yukawa** with a dedicated run at 125 GeV

Collider	HL-LHC	ILC_{250}	$CLIC_{380}$	$CEPC_{240}$	$\text{FCC-ee}_{240 \rightarrow 365}$
$Lumi (ab^{-1})$	3	2	1	5.6	5+0.2+1.5
Years		$11.5^{\ 5}$	8	7	3+1+4
$g_{ m HZZ}$ (%)	1.5 / 3.6	$0.29 \ / \ 0.47$	$0.44 \ / \ 0.66$	$0.18 \ / \ 0.52$	0.17 / 0.26
$g_{\rm HWW}$ (%)	$1.7 \ / \ 3.2$	$1.1 \ / \ 0.48$	$0.75 \ / \ 0.65$	$0.95 \ / \ 0.51$	$0.41 \ / \ 0.27$
$g_{ m Hbb}~(\%)$	$3.7 \ / \ 5.1$	$1.2 \ / \ 0.83$	$1.2 \ / \ 1.0$	$0.92 \ / \ 0.67$	$0.64 \ / \ 0.56$
$g_{ m Hcc}~(\%)$	SM / SM	$2.0 \ / \ 1.8$	4.1 / 4.0	2.0 / 1.9	1.3 / 1.3
g_{Hgg} (%)	2.5 / 2.2	1.4 / 1.1	15/1.3	1.1 / 0.79	0.89 / 0.82
$g_{\mathrm{H} au au}$ (%)	1.9 Dise	CISI/0.Bi	~1 4 <u>-</u> /⊿®	CQUIDI	▶ .66 / 0.57
$g_{\mathrm{H}\mu\mu}$ (%)	4.3 / 5.5	$4.2 \ / \ 4.1$	4.4 / 4.3	3.9 / 3.8	3.9 / 3.8
$g_{\mathrm{H}\gamma\gamma}$ (%)	1.8 A E a	Cħ₽₫₃₩	/ኪ肉/ネネ45	years (ot ictata2
$g_{\mathrm{HZ}\gamma}$ (%)	11. / 11.	11. / 10.	11. / 9.8	6.3 / 6.3	10. / 9.4
$g_{ m Htt}$ (%)	3.4 / 2.9	$2.7 \ / \ 2.6$	$2.7 \ / \ 2.7$	2.6 / 2.6	2.6 / 2.6
$g_{ m HHH}~(\%)$	50. / 52.	28. / 49.	45. / 50.	17. / 49.	19. / 34.
$\Gamma_{\rm H}$ (%)	\mathbf{SM}	2.4	2.6	1.9	1.2
BR_{inv} (%)	1.9	0.26	0.63	0.27	0.19
BR_{EXO} (%)	SM (0.0)	1.8	2.7	1.1	1.0

- **20** ab^{-1} / year at $\sqrt{s} = 125 \text{ GeV}$ (not in baseline FCC-ee)
- Monochromatization $\sigma_{\sqrt{s}} \sim 1-2 \times \Gamma_{H} \sim 6$ to 10 MeV

High-energy Higgs dynamics

High-energy Higgs probes

Looking for the tail: Indirect searches

even if we can not directly produce the new particles, we can test their **indirect effects**

High-energy Higgs probes

Looking for the tail: Indirect searches

even if we can not directly produce the new particles, we can test their **indirect effects**

 new-physics effects tend to grow with energy ["energy helps accuracy", Farina et al. '16]

High-energy Higgs probes

Looking for the tail: Indirect searches

even if we can not directly produce the new particles, we can test their **indirect effects**

- deviations are "universal"
 - limited number of behaviors dictated by symmetry
 - can be parametrised by EFT
 - can test large set of BSM scenarios

Testing the Higgs dynamics

Di-boson production is a golden channel test the high-energy Higgs dynamics

♦ can probe deviations in non-linear Higgs couplings

Challenging analysis

- energy-growing new physics effects confined to subleading helicity channels (longitudinal) (--> interference resurrection via differential measurements)
- non-trivial complex final states

WZ production: LHC

Estimate of the bounds on $a_q^{(3)}(\overline{q}_L\sigma^a\gamma^\mu q_L)(iH^{\dagger}\sigma^a\overleftrightarrow{D}_{\mu}H)$

[Franceschini, GP, Pomarol, Riva, Wulzer '17]

- Non-trivial analysis: longitudinal channels small --> exploit transverse zeroes
- ✤ Big improvement with respect to LEP

WZ production: LHC

Estimate of the bounds on $a_q^{(3)}(\overline{q}_L\sigma^a\gamma^\mu q_L)(iH^{\dagger}\sigma^a\overleftrightarrow{D}_{\mu}H)$

[Franceschini, GP, Pomarol, Riva, Wulzer '17]

- ♦ Non-trivial analysis: longitudinal channels small → exploit transverse zeroes
- Big improvement with respect to LEP
- ◆ Accuracy plays an important role for the BSM reach
 - weakly coupled new physics only accessible with low systematics («100%)

WZ production: Future colliders

Estimate of the bounds on $a_q^{(3)}(\overline{q}_L\sigma^a\gamma^\mu q_L)(iH^{\dagger}\sigma^a\overleftrightarrow{D}_{\mu}H)$

- ✦ additional improvement possible at future colliders
- ♦ reach at FCC-hh comparable with CLIC see [Ellis, Roloff, Sanz, You '17]

WZ Production and Universal Theories

Test universal theories in WZ production channel

[Franceschini, GP, Pomarol, Riva, Wulzer '17]

• better determination on trilinear gauge couplings (δg_1^Z) with respect to global fit at LEP

WZ Production and Universal Theories

[Franceschini, GP, Pomarol, Riva, Wulzer '17]

- ◆ better determination on trilinear gauge couplings (δg^Z₁) with respect to global fit at LEP
- ✦ LHC and LEP probe independent operators
 - correlations can exist in specific theories (eg. composite Higgs $\widehat{S} \simeq -\delta g_1^Z$)

High luminosity and rare channels

High luminosity and rare channels

Example: VH production

Different decay channels:

• $H \rightarrow \gamma \gamma$ \rightarrow tiny cross section (only accessible at FCC-hh), but very clean

VH at FCC-hh

[Bishara, Englert et al. '22]

- $VH(\rightarrow bb)$ and $VH(\rightarrow \gamma\gamma)$ provide similar sensitivity
- ✤ Bounds competitive with WZ

VH at FCC-hh

[Bishara, Englert et al. '22]

- ♦ VH(→ bb) and VH(→ γγ) provide similar sensitivity
- ✤ Bounds competitive with WZ

VH at FCC-hh

[Bishara, De Curtis et al. '20]

FCC-hh can match (or surpass) sensitivity at e⁺e⁻ colliders

Higgs trilinear coupling

Theoretical Motivations

Measuring the **Higgs self-couplings** is essential to understand the structure of the **Higgs potential**

$$\mathcal{L} = -\frac{1}{2}m_h^2 h^2 - \lambda_3 \frac{m_h^2}{2v}h^3 - \lambda_4 \frac{m_h^2}{8v^2}h^4$$

 Current measurements only tested locally the minimum of the Higgs potential (Higgs mass and VEV, i.e. quadratic approximation of the potential)

$$V(H) = \lambda_4 \left(|H|^2 - v^2 \right)^2$$

 Directly measuring the Higgs self-interactions gives us direct evidence of the full structure of the Higgs potential

+ HL-LHC can test the Higgs trilinear with O(50%) precision [See Di Micco et al. '19]

 $-0.43 \le \delta \kappa_{\lambda} \le 0.5$ at 68% C.L.

[McCullough '13]

Good sensitivity at low energy in HZ (and $\nu\bar{\nu}H$) channels

Expected precision from I-parameter fit (1 σ bounds)

collider	1-parameter	
CEPC 240	18%	
FCC-ee 240	21%	CECP and FCC-ee
FCC-ee 240/365	21%	provide fair
FCC-ee (4IP)	15%	sensitivity
ILC 250	36%	_
ILC 250/500	32%	
ILC 250/500/1000	29%	
CLIC 380	117%	
CLIC 380/1500	72%	collider CECP 24
CLIC 380/1500/3000	49%	FCC-ee 2 FCC-ee 3

[Di Micco et al. '19]

collider	Full \mathcal{L} [ab ⁻¹]
CECP 240	5.6
FCC-ee 240	5.0
FCC-ee 365	1.5
FCC-ee $(4IP)$	12.0 + 5.5
ILC 250	2.0
ILC 500	4.0
ILC 1000	8.0
CLIC 380	1.0
CLIC 1500	2.5
CLIC 3000	5.0

Expected precision from global fit $(1\sigma \text{ bounds})$

collider	1-parameter	full SMEFT			
CEPC 240	18%	-	•	runs at	single energy
FCC-ee 240	21%	-		do r signifi	ot provide
FCC-ee 240/365	21%	44%		5181111	
FCC-ee (4IP)	15%	27%			
ILC 250	36%	-			
ILC 250/500	32%	58%			
ILC 250/500/1000	29%	52%			
CLIC 380	117%	-	-		1.
CLIC 380/1500	72%	-	CECH	er 2 240	$\frac{\text{Full } \mathcal{L} [ab^{-1}]}{5.6}$
CLIC 380/1500/3000	49%	-	FCC-0	ee 240 ee 365	5.0
			FCC-	ee (4IP)	12.0 + 5.5

[Di Micco et al. '19]

2.0

4.0

8.0

1.0

2.5

5.0

ILC 250

ILC 500

ILC 1000

CLIC 380

CLIC 1500

CLIC 3000

Expected precision from global fit $(1\sigma bounds)$

collider	1-parameter	full SMEFT	
CEPC 240	18%	-	← runs at single energy
FCC-ee 240	21%	-	do not provide
FCC-ee 240/365	21%	44%	Significante Dourido
FCC-ee (4IP)	15%	27%	
ILC 250	36%	-	determination can
ILC 250/500	32%	58%	reach 27% at FCC-ee
ILC 250/500/1000	29%	52%	points
CLIC 380	117%	-	
CLIC 380/1500	72%	-	$\begin{array}{c c} \hline collider & Full \mathcal{L} [ab^{-1}] \\ \hline CECP 240 & 5.6 \end{array}$
CLIC 380/1500/3000	49%	-	FCC-ee 240 5.0 FCC-ee 365 1.5
[Di Micco et al.'19]			$\frac{\text{FCC-ee (4IP)}}{\text{HCC-ee (4IP)}}$
			$ \begin{array}{c ccccc} & 1LC 250 & 2.0 \\ & 1LC 500 & 4.0 \\ \end{array} $

8.0

 $1.0 \\ 2.5$

5.0

ILC 1000

CLIC 380

CLIC 1500 CLIC 3000

Two main channels ZHH and $\nu\bar{\nu}HH$

Precision reach at ILC and CLIC

Expected precision from HH production channels $(1\sigma \text{ bounds})$

collider	excl. from HH	
HL-LHC	50%	
ILC 500	27%	
ILC 1000	10%	
CLIC 1500	36%	Can reach the 10%
CLIC 3000	[-7%, 11%]	

Muon collider

High-energy muon collider can be competitive with FCC-hh

Conclusions

Conclusions

Future colliders can provide **big quantitative and qualitative improvements** in our understanding of the Higgs boson

Important to exploit **complementarity** of different machines

low-energy lepton colliders

- "pole" properties (mass, width, ...)
- (most) linear Higgs couplings

high-energy lepton/hadron colliders

- ► top Yukawa, effective coupling to photon and Z
- non-linear couplings (+ Goldstone equivalence)
- Higgs potential

Backup

HL and HE LHC

[See Di Micco et al. '19]

◆ HL-LHC can test the Higgs trilinear with O(50%) precision $-0.43 \le \delta \kappa_{\lambda} \le 0.5 \quad \text{at} \quad 68\% \quad \text{C.L.}$

 ✦ HE-LHC could test the Higgs trilinear with O(10-20%) precision (depending on systematics)

Sensitivity to Higgs self-coupling

The two channels provide complementary information

- ZHH gives stronger constraints on $\delta \kappa_{\lambda} > 0$
- $\nu \bar{\nu} H H$ gives stronger constraints on $\delta \kappa_{\lambda} < 0$

• dependence on $\delta \kappa_{\lambda}$ decreases with energy in $\nu \bar{\nu} H H$, but compensated by large increase in cross section

Help from differential distributions

The Higgs trilinear coupling strongly modifies the distributions

differential analysis can help to exclude large deviations form the SM