LFC24 Fundamental Interactions at Future Colliders

Status and prospects for Higgs physics at the LHC

Paolo Francavilla Università di Pisa - INFN Pisa

17/9/2024

Outline

- Current status of art
- New Run2 Results: Single Higgs
- New Run2 Results: Double Higgs and self couplings
- New Results: Run3 measurements
- Few slides on the future

Current status of art

Current status-of-art: Higgs boson couplings

Reached precision per experiment:

Boson Sector (W,Z,γ,g):

7-8%

Fermion Sector:

- Quarks : 10%(b) 15%(t)
- Leptons:

8%(τ), 20%(μ)

Current status-of-art: Production and decay modes

5

Current status-of-art: Higgs boson mass

CMS: using $H \rightarrow ZZ^* \rightarrow 4I$:

m_H = 125.08 ± 0.10 (stat) ± 0.05 (syst) GeV

CMS-PAS-HIG-21-019

most precise single measurement!

ATLAS: combining H→4I +H→γγ: m_H = 125.11 ± 0.11 GeV (syst: 0.09 GeV)

Phys. Rev. Lett. 131 (2023) 251802

most precise measurement up to date

 $H \rightarrow \gamma \gamma$ mass resolution systematics reduced by factor 4!

Current status-of-art: Higgs boson width SM Prediction: $\Gamma_{H}^{SM} = 4.1~{
m MeV}$ **CMS** *Preliminary* 138 fb⁻¹ (13 TeV) 20 CMS-PAS-HIG-21-019 Indirect measurement through the on-shell Observed and off-shell measurement $\sigma^{
m on-shell} \propto rac{g_{
m p}^2 g_{
m d}^2}{\Gamma_{
m H}} \propto \mu_{
m p} \Rightarrow \sigma^{
m off-shell} \propto g_{
m p}^2 g_{
m d}^2 \propto \mu_{
m p} \Gamma_{
m H},$ Expected Assumes that Higgs production follows SM $[\nabla_{P}]_{P}$ $[\nabla_{P}]_{Q}$ $[\nabla_{P}]_{Q}$ [CMS: using $H \rightarrow ZZ^* \rightarrow 4I$: 5 95% CL $\Gamma_{H} = 2.9^{+2.3}_{-1~7}~{
m MeV}$ cms-pas-hig-21-019 68% CL ATLAS: combining $H \rightarrow 4I + H \rightarrow 2I2v$: 15 5 10 Γ (MeV) $\Gamma_{H} = 4.5^{+3.3}_{-2.5}~{
m MeV}$ Phys. Lett. B 846 (2023) 138223 Paolo Francavilla - I FC24

Current status-of-art: Higgs boson width

× SM

 10^{2}

 $\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM}$

V)

(some) open questions

- Are there anomalies in the interaction of the Higgs boson with:
 - \circ the W and Z bosons?
 - the fermion sector?
 - itself?
- Does the Higgs boson decay into pairs of different flavour fermions?
- Are there CP violating Higgs decays?
- Are there new modes of the Higgs boson decay?
- Is the Higgs boson width consistent with the SM prediction?
- Can the Higgs boson act as a portal for an hidden sector?
- Is there an extended Higgs sector?
- ... and many more!

(some) open questions

An example of improvements in experimental techniques

Rapid progress in techniques:

An elusive/rare channel: WH produced via VBF

Thanks to the interference in the VBF WH production, we can determine the relative sign of κ_w and κ_z .

Different relative sign excluded with $> 5 \sigma$

Similar results from CMS

<u>CMS-HIG-23-007</u>

The data we can use

CMS Luminosity Public Results

- Run3: 2022 2025 (?)
- More integrated luminosity than Run2+Run1
- Almost twice the number of interactions per bunch crossing

New Run2 results: Single Higgs

Higgs-top coupling

Higgs-to

s-top coupling	ATLAS Run 2	► Data (Total uncertainty)	Syst. uncertainty	SM prediction
Improved b-tagging (D Improved modeling of Looser selection for be Use of transformer net background, reconstru	L1r) backgrounds (tt- etter control. works to separa ict p _T (H)	⊦b(b)), te signal and		
rall uncertainty improved by factor 1.8,				
4.6σ observed				
$\mu_{ttH} = 0.81_{-0}^{+0.0}$	$^{22}_{.19}(^{+0.20}_{-0.16}$ sy	st.)		

HIGG-2020-24

Overall

CN

Pre

 μ_{ttH}^{4l}

µ^{bb} ttH HIG−1§

 $\mu_{ttH}^{\gamma\gamma}$

μ^{mu} ttH Eur. Pt

Higgs-charm coupling

H→bb largest Higgs BR (58%)

H→cc largest BR to 2nd gen. fermions (2.9%)

(V→lep)H most sensitive mode to access both.

Require b-jets or c-jets,

split signal in $\mathrm{N}_{\mathrm{leptons}}$:

- 0 (Z→∨∨),
- 1 (W→I∨)
- 2 (Z→II)

Higgs-charm coupling

Factor 2.5 improv. over previous limit !

⇒ |κc| < 4.2 @ 95% CL

X2 improvement over previous

ATLAS-CONF-2024-010 Higgs-bottom coupling

Uncertainties reduced by ~20%, First observation of WH→bb (5.3σ)

 $\mu_{WH} = 0.95 \substack{+0.21 \\ -0.19} \begin{pmatrix} +0.15 \\ -0.13 \end{pmatrix} \text{ syst.}$ $\mu_{ZH} = 0.87 \substack{+0.23 \\ -0.20} \begin{pmatrix} +0.18 \\ -0.14 \end{pmatrix} \text{ syst.}$

Phys. Rev. D 109 (2024) 092011

Results compatible with SM $\mu_{WH} = 1.31 \pm 0.24 \pm 0.26$ $\mu_{ZH} = 1.07 \pm 0.17 \pm 0.17$ 138 fb⁻¹ (13 TeV) Observed CMS $\pm 1\sigma$ (stat \oplus syst) VH, H→bb 🛑 ±1σ (syst) ZH, p_(V) > 400 GeV $1.83 \pm 0.63 \pm 0.42$ ZH, 250 < p_(V) < 400 GeV $1.52 \pm 0.36 \pm 0.33$ ZH, 150 < $p_{-}(V)$ < 250 GeV, \geq 1J $-0.56 \pm 0.78 \pm 0.72$ ZH, 150 < p_(V) < 250 GeV, = 0J $0.42 \pm 0.37 \pm 0.30$ ZH, 75 < p_(V) < 150 GeV $1.42 \pm 0.52 \pm 0.56$ WH, p_(V) > 400 GeV $1.90 \pm 0.63 \pm 0.49$ WH, 250 < p_(V) < 400 GeV $1.88 \pm 0.47 \pm 0.38$ WH, 150 < p_(V) < 250 GeV $0.25 \pm 0.45 \pm 0.49$ 5 6 2 3 Best-fit µ Paolo Francavilla - LFC24 20

ATLAS-CONF-2024-010 Higgs-bottom coupling

Uncertainties reduced by ~20%, First observation of WH→bb (5.3σ)

> $\mu_{WH} = 0.95 ^{+0.21}_{-0.19} (^{+0.15}_{-0.13} \text{ syst.})$ $\mu_{ZH} = 0.87 ^{+0.23}_{-0.20} (^{+0.18}_{-0.14} \text{ syst.})$

Phys. Rev. D 109 (2024) 092011

Results compatible with SM $\mu_{WH} = 1.31 \pm 0.24 \pm 0.26$ $\mu_{ZH} = 1.07 \pm 0.17 \pm 0.17$ 138 fb⁻¹ (13 TeV) Observed CMS $\pm 1\sigma$ (stat \oplus syst) VH, H→bb ∎ ±1σ (svst) ZH, p_(V) > 400 GeV $1.83 \pm 0.63 \pm 0.42$ ZH, 250 < p₋(V) < 400 GeV $1.52 \pm 0.36 \pm 0.33$ ZH, 150 < $p_{-}(V)$ < 250 GeV, \geq 1J $-0.56 \pm 0.78 \pm 0.72$ ZH, 150 < p_(V) < 250 GeV, = 0J $0.42 \pm 0.37 \pm 0.30$ ZH, 75 < p_(V) < 150 GeV $1.42 \pm 0.52 \pm 0.56$ WH, p₊(V) > 400 GeV $1.90 \pm 0.63 \pm 0.49$ WH, 250 < p_(V) < 400 GeV $1.88 \pm 0.47 \pm 0.38$ WH, 150 < p_(V) < 250 GeV $0.25 \pm 0.45 \pm 0.49$ 5 6 2 3 Best-fit µ

Higgs-tau coupling

 $H \rightarrow \tau\tau$ largest BR to leptons (6%)

Sufficient statistics and low enough backgrounds for precise measurements for **VBF**:

Most precise measurement to date

First measurement in multiple m_{jj} bins for the higher $p_{T}(H)$

Higgs-tau coupling

Sufficient statistics and low enough backgrounds for precise measurements at **high p_T(H)**:

First measurement of boosted high $p_{\tau}(H)$ using the $H \rightarrow \tau\tau$

Dedicated reconstruction algorithm for the boosted ττ topologies

Among the most precise measurements in the $\ensuremath{p_{\text{T}}}(\ensuremath{\text{H}})$ regime

ATLAS

HIGG-2022-07

√s = 13 TeV. 140 fb⁻

New Run2 results: Double Higgs and self couplings

Access the triple Higgs boson coupling (κ_{λ})

⇒Probe the shape of the Higgs potential

Also accesses other interactions, e.g. VVHH (κ_{2V})

ATLAS Run 2 combinations

Combine HH→bbττ + bbγγ + bbbb + multileptons + bbll+MET:

 $\mu_{HH} = 0.5 \, {}^{+1.2}_{-1.0} (\, {}^{+0.7}_{-0.6} \, \, \mathrm{syst.})$

Uncertainty comparable to SM signal!

-1.2 < κ_{λ} < 7.2 @ 95% CL Dominated by $\gamma\gamma$ bb + $\tau\tau$ bb Best constraint to date on λ 3 coupling!

0.6 < κ_{2V} < 1.5 @ 95% CL

Dominated by VBF HH+bbbb Best constraint from CMS: 0.67 < K_{2V} < 1.38 @ 95% CL

CMS VBF HH+bbVV

CMS-PAS-HIG-23-012

Search for VBF HH→bbVV production

Consider collimated hadron decays:

H→bb tagger and H→VV tagger

Observe µ_{нн} < 142 (69 exp.) and -0.04 < к_{2v} < 2.05 @ 95% CL

CMS Search for WWH(bb) in VBS

Analysis of H(bb) + $W^{\pm}W^{\pm}(I^{\pm}vI^{\pm}v)$ produced in Vector Boson Scattering (VBS)

Sensitive to κ_{2W}

-3.33 < Kww < 5.33 @ 95% CL

First analysis targeting $\kappa_{_{\rm 2W}}$ using single H

H(bb) reconstructed as a single Large-R jet

New results: Run3 measurements

CMS Run3 Hyy and H4I at 13.6 TeV

CMS Run3 Hyy and H4I at 13.6 TeV

Measure $H\gamma\gamma$ and H4I in Run3 data (34.7 fb-1 collected in 2022).

Differential cross sections in $p_T(H)$, N_{iets} , ... in agreement with predictions

Few slides on the future

LHC schedule

From Liza's Brost slides

- Instantaneous luminosity: 5–7.5 times higher
 - Pile up will increase from 60 (now) to 140-200 (levelled)
 - Beam induced cavern background increases linearly
 - Much larger radiation to detectors
 - Larger data sample: big challenges for computing and data storage
- Require improvements for experiments in all areas
 - Detectors, Electronics & Trigger, Software and computing

Projections: Higgs couplings

Higgs couplings move into precision regime

Most of them dominated by theory uncertainties

- Bosons and τ: <2% level
- 3rd generation quarks: 3.5%

Do we already know we can do better?

Projections: Higgs self-coupling

European Strategy (2018)

Combination of 5 HH channels. based on partial Run2 results

50% precision in self coupling

 4σ for SM HH (ATLAS + CMS)

ATLAS Updated bbbb, bbyy, and bbrt, CMS updated bbyy, yyWW, yytt, ttHH

Likely 5σ from back of the envelope estimations

Conclusions

Conclusions

Very broad physics program on the Higgs boson at the LHC.

- Reaching an unforeseen level of precision for the amount of data we analysed!
- Significant reduction of uncertainties on all the couplings,
 - Second generation fermions are not anymore beyond our reach
- Di-Higgs is already reaching the SM sensitivity with Run2 data
 And we have more Run3 collisions already on our disks!
- Completing the Run2 physics program
 - Final Run2 Combinations between LHC experiments
- Run3 offers us a unique opportunity to improve the precision of our measurements,
 - and surprises can always come....