Long-lived particles at colliders

Jan Hajer

Centro de Física Teórica de Partículas, Instituto Superior Técnico, Universidade de Lisboa

LFC24 — Fundamental Interactions at Future Colliders

Long-lived particless (LLPs) in the Standard Model (SM)

$\ensuremath{\mathsf{LLPs}}$ beyond the $\ensuremath{\mathsf{SM}}$

New Physics

Any model with such features can contain LLPs

- Supersymmetry
- Dark Matter models
- Extended Higgs sectors

Portals to hidden sectors

- Many extension to the SM feature hidden sectors
- Often motivated by DM candidates

Prime examples

- Axion like particles
- Heavy neutral leptons (HNLs)
- Hidden U(1) / New gauge bosons

Search strategies

- Displaced tracks/vertices
- Emerging jets
- Disappearing tracks
- Kinked tracks
- Quasi-stable charged particles

Neutrino flavour oscillations and seesaw mechanism

Right-handed Majorana neutrino N $\mathcal{L}_m = \begin{pmatrix} \vec{\nu} \\ N \end{pmatrix}^{\mathrm{r}} \begin{pmatrix} 0 & \vec{m}_D \\ \vec{m}_D^{\mathrm{T}} & m_M \end{pmatrix} \begin{pmatrix} \vec{\nu} \\ N \end{pmatrix}$ Interaction governed by mixing parameter $\vec{ heta} = rac{\vec{m}_D}{m_M}$ Dirac mass Majorana mass Neutrino masses $M_{\nu} = \frac{\vec{m}_D \vec{m}_D^{\mathsf{T}}}{m_M} = m_M \vec{\theta} \vec{\theta}^{\mathsf{T}}$ Tiny neutrino masses are ensured for large m_M High scale seesaw small \vec{m}_D Small coupling seesaw Sterile neutrinos/HNLs Inaccessibly heavy or Tiny interactions

Experimental searches

Inaccessible: • Small coupling seesaw • High scale seesaw (at the GUT scale)

FCC cavern and detector layout

Proposal: HErmetic CAvern TrackEr (HECATE)

[2011.01005]

Idea

- Exploit the additional space surrounding the FCC-*ee* detectors in the FCC-*hh* caverns
- Build a 4π LLP detector

Layout

- Cover the cavern surface with detector material
- Minimum of two layers allows for timing
- Main detector serves as veto

For $\lambda \gg \mathit{l}_1 \gg \mathit{l}_0$

$$|\theta|^2 \propto \frac{1}{\sqrt{l_1}} \propto \frac{1}{\sqrt{L}}$$

Half a magnitude sensitivity gain in $|\theta|^2$

All efficiencies assumed to be $100\,\%$

Symmetry-protected low-scale seesaw

Dirac vs. Majorana

Symmetry-protected benchmark models (BMs) contain pseudo-Dirac HNLs

With care some properties can be correctly approximated by simpler BMs

Dirac BM	Majorana BM
 ✓ Correct production cross section ✓ Correct decay width ✓ No lepton number violation (LNV) ✓ No neutrino masses 	 ✓ Correct production cross section ↓ Wrong decay width ✓ LNV ↓ Generically too much LNV
Displaced vertex searches for Dirac HNLs	Prompt searches for LNV with Majorana HNLs
Displaced vertex searches for Dirac HNLs Generically correct	Prompt searches for LNV with Majorana HNLs Generically the bounds are too strong

Heavy neutrino-antineutrino oscillations $(N\overline{N}Os)$

[2210.10738]

Decaying oscillations

[2210.10738]

1.

Naive lepton number violation for five BMs

Measuring LNV at the HL-LHC

[pSPSS, 2212.00562]

During the Z-pole run of the FCC-ee

Probability of measuring charged leptons

- linked to forward backward asymmetry (FBA) of neutrino production (see 'almost Dirac limit')
- I^- from non-oscillating N or from oscillating \overline{N} (similar for I^+)

Time and angular integrated observable

LNV in distributions at future lepton colliders

[2408.01389]

Analysis powers

[2408.01389]

17

Significance at the FCC-ee for different mass splittings

[2408.01389]

$5\,\sigma$ discovery reach of the FCC- ee

Maximal significance of the FCC-ee

Significance dependents on the vertex reconstruction error

[2408.01389]

Testable values of the LNV ratio

- Long-lived particles (LLP) are prevalent in the SM and expected to also appear in new physics
- One typical benchmark model scenario consists of HNLs
- Collider testable Type I seesaw models predict pseudo-Dirac HNLs
- Pseudo-Dirac HNLs can oscillate between LNC and LNV events
- Theses $N\overline{N}Os$ are detectable at the HL-LHC and future lepton colliders

References

[1903.04497] DOI: 10.1	.088/1361-6471/ab4574. In: J. Phys. G 47.9 (2020), p. 90501	
J. Alimena et al. 'Searching for long-lived	particles beyond the Standard Model at the Large Hadron Collider'.	
[FCC- <i>hh</i>] DOI: 10.1140/epjst/e20	019-900087-0. In: <i>Eur. Phys. J. ST</i> 228.4 (2019), pp. 755–1107	
FCC. 'FCC-hh: The Hadron Collider: F	Future Circular Collider Conceptual Design Report Volume 3'.	
[FCC-ee] DOI: 10.1140/epjst/e2	019-900045-4. In: <i>Eur. Phys. J. ST</i> 228.2 (2019), pp. 261–623	
FCC. 'FCC-ee: The Lepton Collider: F	uture Circular Collider Conceptual Design Report Volume 2'.	
[2011.01005] DOI: 10.1140/epj	с/s10052-021-09253-у. In: <i>Eur. Phys. J. С</i> 81.6 (2021), р. 546	
M. Chrząszcz, M. Drewes, and J. Hajer. 'HECATE: A long-lived particle detector concept for the FCC-ee or CEPC'.		
[2210.10738]	DOI: 10.1007/JHEP03(2023)110. In: JHEP 03 (2023), p. 110	
S. Antusch, J. Hajer, and J. Rosskopp. 'Simulating lepton number violation induced by heavy neutrino- antineutrino oscillations at colliders'.		
[2307.06208]	DOI: 10.1007/JHEP11(2023)235. In: JHEP 11 (2023), p. 235	
S. Antusch, J. Hajer, and J. Rosskopp. 'Decoherence effects on lepton number violation from heavy neutrino-antineutrino oscillations'.		

[pSPSS]

DOI: 10.5281/zenodo.7268418 (Oct. 2022)

S. Antusch, J. Hajer, B. M. S. Oliveira, and J. Rosskopp. 'pSPSS: Phenomenological symmetry protected seesaw scenario'. FeynRules model file. URL: feynrules.irmp.ucl.ac.be/wiki/pSPSS

[2212.00562] DOI: 10.1007/JHEP09(2023)170. In: JHEP 09 (2023), p. 170

S. Antusch, J. Hajer, and J. Rosskopp. 'Beyond lepton number violation at the HL-LHC: resolving heavy neutrino-antineutrino oscillations'.

[2308.07297] DOI: 10.1007/JHEP10(2023)129. In: JHEP 10 (2023), p. 129

S. Antusch, J. Hajer, and B. M. S. Oliveira. 'Heavy neutrino-antineutrino oscillations at the FCC-ee'.

[2408.01389]

(Aug. 2024)

S. Antusch, J. Hajer, and B. M. S. Oliveira. 'Discovering heavy neutrino-antineutrino oscillations at the Z-pole'.

Problems measuring R_{II}

Oscillating particles in quantum field theory (QFT)

[2307.06208

Decoherence at the LHC

[2307.06208]

