SUPERSYMMETRY AT COLLIDERS

Dibyashree Sengupta

INFN, Laboratori Nazionali di Frascati, Italy

Fundamental Interactions at Future Colliders 2024, Trieste, Italy

September 18, 2024

The Standard Model

Drawbacks of the Standard Model

The Higgs mass instability problem in the Electroweak (EW)

sector
Supersymmetry (SUSY)

The Strong CP Problem

Existence of Dark Matter

Lightest SUSY Particle (LSP) from R-Parity Conserving (RPC) SUSY+ Axion

> M. Bauer et. al., Lect.Notes Phys. (2019) A. Hook, PoS TASI2018 S.P. Martin, Adv.Ser.Direct.High Energy Phys. (2010) V. D. Barger et.al., Collider Physics (1996)

A BSM Scenario: Supersymmetry (SUSY)

SUSY = SM + Superpartner with spin = spin(SM) \pm 1/2

Main Motivation: Cancellation of Quadratic Divergence in Higgs Mass

Main Motivation: Cancellation of Quadratic Divergence in Higgs Mass

Main Motivation: Cancellation of Quadratic Divergence in Higgs Mass

Main Motivation: Cancellation of Quadratic Divergence in Higgs Mass

 $(-1)_R \rightarrow (-1)_R \ (1)_R$ (allowed); $(1)_R \rightarrow (-1)_R \ (-1)_R \ (kinematically forbidden);$ $(-1)_R \rightarrow (1)_R \ (1)_R \ (forbidden \ by RPC)$

Where are the sparticles?

none seen so far at LHC

	No SPARTICLES yet!
	$m_{sparticles} \gg m_{SM particles}$
L	_HC Limits : $m_{ ilde{g}}>$ 2.25 TeV , $m_{ ilde{t}_1}>$ 1.3 TeV

Notion of Practical Naturalness :

An Observable \mathcal{O} is natural if all independent contributions to \mathcal{O} are comparable to or less than \mathcal{O} .

Notion of Practical Naturalness :

An Observable \mathcal{O} is natural if all independent contributions to \mathcal{O} are comparable to or less than \mathcal{O} .

$$\Delta_{\rm EW} = \max_i |C_i| / (M_Z^2/2)$$
$$\frac{M_Z^2}{2} \approx -m_{H_u}^2 - \mu^2 - \Sigma_u^u \left(\tilde{t}_{1,2}\right)$$

Notion of Practical Naturalness :

An Observable \mathcal{O} is natural if all independent contributions to \mathcal{O} are comparable to or less than \mathcal{O} .

$$\begin{aligned} \Delta_{\rm EW} &= \max_i |C_i| / (M_Z^2/2) \\ \frac{M_Z^2}{2} \approx -m_{H_u}^2 - \mu^2 - \Sigma_u^u \left(\tilde{t}_{1,2} \right) \end{aligned}$$

H. Baer et. al., Cambridge University Press, 2006.

$\Delta_{\text{EW}} < 30$?

Δ_{EW} < 30 \implies Anthropic requirements needed to sustain life

$\Delta_{\rm EW} < 30$?

Agrawal, Barr, Donoghue, Seckel, Phys. Rev. D 57, 5480

 $\Delta_{\rm EW} < 30$?

Agrawal, Barr, Donoghue, Seckel, Phys. Rev. D 57, 5480

 $\Delta_{\rm EW} < 30$?

$$\Delta_{EW} = 30 \implies 4 \times m_Z^{OU}$$

Agrawal, Barr, Donoghue, Seckel, Phys. Rev. D 57, 5480

Supersymmetry Breaking

Supersymmetry Breaking

SUSY BREAKING EFFECTS MEDIATED TO VISIBLE SECTOR VIA:

Typical Mass Spectra of Natural SUSY Models

Dark Matter in SUSY

 $\Delta_{\rm EW} < 30 \& 122 < m_h < 128 {\rm GeV}$

Dark matter = LSP from RPC SUSY+Axion

Baer, Barger, DS, Tata, Eur. Phys. J. C 78 (2018) 10, 838

Sparticles Production at LHC

For a typical natural SUSY model line at \sqrt{s} = 14 TeV

Higgsino pair-production dominant but only soft visible energy released from higgsino decays

HL-LHC best bet: Higgsino pair production

Baer, Barger, Huang, JHEP 11 (2011) 031; Z. Han, Kribs, Martin, Menon, Phys.Rev.D 89 (2014) 7, 075007; Baer, Mustafayev, Tata, Phys.Rev.D 90 (2014) 11, 115007; C. Han, Kim, Munir, Park, JHEP 04 (2015) 132; Baer, Barger, Savoy, Tata, Phys.Rev.D 94 (2016) 3, 035025; Baer, Barger, Salam, DS, Tata, Phys.Lett.B 810 (2020) 135777; Baer, Barger, DS, Tata, Phys. Rev. D 105 (2022) 9, 095017

signal in this channel should emerge slowly as more integrated luminosity accrues; both CMS and ATLAS have ~2-sigma excess in this channel: keep watch!

Higgsino Pair-Production at HI-LHC

SM Backgrounds: $\tau \bar{\tau} j$, $t\bar{t}$, WWj, $W\ell\bar{\ell}j$, $Z\ell\bar{\ell}j$ **BENCHMARK POINTS** • BM1 (NUHM2): $m_{\tilde{\chi}_{2}^{0}} = 157.6 \text{ GeV}$, $m_{\tilde{\chi}_{1}^{0}} = 145.4 \text{ GeV}$, $\Delta m = m_{\tilde{\chi}_{2}^{0}} - m_{\tilde{\chi}_{1}^{0}} = 12.2 \text{ GeV}$, $\Delta_{EW} = 13.9$ • BM2 (NUHM2): $m_{\tilde{\chi}_{2}^{0}} = 310.1 \text{ GeV}$, $m_{\tilde{\chi}_{1}^{0}} = 293.7 \text{ GeV}$, $\Delta m = m_{\tilde{\chi}_{2}^{0}} - m_{\tilde{\chi}_{1}^{0}} = 16.4 \text{ GeV}$, $\Delta_{EW} = 21.7$ • BM3 (GMM'): $m_{\tilde{\chi}_{2}^{0}} = 207.0 \text{ GeV}$, $m_{\tilde{\chi}_{1}^{0}} = 202.7 \text{ GeV}$, $\Delta m = m_{\tilde{\chi}_{2}^{0}} - m_{\tilde{\chi}_{1}^{0}} = 4.3 \text{ GeV}$, $\Delta_{EW} = 26.0$

Despite <u>large cross-section of pair production of higgsinos</u>, the signal is swamped by backgrounds because the <u>decay products are soft</u>. Hence the focus is on <u>monojet + soft dilepton + \mathbb{F}_T </u> signal, triggered by monojet.

BASIC CUTS

 $p_T(j)$ > 80 GeV, $p_T(\ell)$ > 1 GeV, $\Delta R(\ell \bar{\ell})$ > 0.01, $m(\ell \bar{\ell})$ > 1 GeV for the backgrounds $\gamma^*, Z^* \to \ell \bar{\ell}$

•
$$n(b - jet) = 0.$$

Angle Cuts

Table: Cross sections (in fb) for signal benchmark points and the various SM backgrounds listed in the text after various cuts.

• $m(\ell\bar{\ell}) < 50~{\rm GeV}$

Mass Reach

Mass Reach (nAMSB model)

Model Line: $m_0(3) = m_{3/2}/35, m_0(1,2) = 2m_0(3), A_0 = 1.2m_0(3), \tan\beta = 10, m_A = 2TeV$

Baer, Barger, Bolich, Dutta, DS 2408.03276

Higgsino Pair-Production at LHC

Natural SUSY: Higgsinos almost fully covered by HL-LHC

Wino Pair-Production at HL-LHC

Distinctive new same-sign diboson (SSdB) for natural SUSY models with light higgsinos

Wino Pair-Production at HL-LHC

Distinctive new same-sign diboson (SSdB) for natural SUSY models with light higgsinos

HL-LHC can see m(wino) followed by decay to light higgsinos ~0.8-1.1 TeV @5sigma/ 95% CL

Baer, Barger, Gainer, Savoy, DS, Tata, Phys.Rev.D 97 (2018) 3, 035012

Top squark searches

Model Line: $m_0 = 5$ TeV, $m_{1/2} = 1.2$ TeV, $tan \beta = 10$, $\mu = 250$ GeV, $m_A = 2$ TeV, $A_0 = -7$ TeV to -9 TeV

Baer, Barger, Dutta, DS, Zhang, Phys.Rev.D 108 (2023) 7

Top squark searches

Baer, Barger, Dutta, DS, Zhang, Phys.Rev.D 108 (2023) 7

Gluino pair cascade decay signatures

Baer, Barger, Gainer, Huang, Savoy, DS, Tata, Eur.Phys.J.C 77 (2017) 7, 499

LHC Confronts SUSY

Baer, Barger, Gainer, DS, Serce Phys. Rev. D 98 (2018) 7, 075010

Smoking gun signature: Light higgsinos at ILC

ILC1: $m_0 = 7025 \text{ GeV}, m_{1/2} = 568.3 \text{ GeV}, A_0 = -11426.6 \text{ GeV}, \tan \beta = 10, \mu = 115 \text{ GeV}, m_A = 1000 \text{ GeV}$

3-15 GeV higgsino mass gaps no problem in clean ILC environment https://indico.cern.ch/event/1375202/ - April 25th 2024 - Roberto Franceschini - LHC top WG

Has LHC excluded Light new Physics?

Has LHC excluded Light new Physics?

ATLAS SUSY Searches* - 95% CL Lower Limits

August 2023

	Model		S	ignatur	e ∫∠	<i>C dt</i> [fb ⁻	¹] M a	ass limit					Reference
Si	$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}_1^0$		0 <i>e</i> , μ mono-jet	2-6 jets 1-3 jets	$E_T^{ m miss}$ $E_T^{ m miss}$	140 140	 <i>q</i> [1×, 8× Degen.] <i>q</i> [8× Degen.] 		1.0 0.9	1.8	5	m($ ilde{\chi}_1^0)$ <400 GeV m($ ilde{q}$)-m($ ilde{\chi}_1^0$)=5 GeV	2010.14293 2102.10874
Inclusive Searche	$\tilde{g}\tilde{g},\tilde{g}{ ightarrow} q\bar{q}\tilde{\chi}_1^0$		0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{ m miss}$	140	ĝ ĝ		Forbidden	1.15-1	2.3 .95	$\mathfrak{m}(ilde{\mathcal{X}}_1^0) = 0 \; \mathrm{GeV} \ \mathfrak{m}(ilde{\mathcal{X}}_1^0) = 1000 \; \mathrm{GeV}$	2010.14293 2010.14293
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}$	0	1 e, µ	2-6 jets		140	ĝ				2.2	$m(\tilde{\chi}_1^0)$ <600 GeV	2101.01629
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)$	\tilde{x}_1^0	ee, µµ	2 jets	E_T^{miss}	140	Ĩ				2.2	$m(\tilde{\chi}_1^0) < 700 GeV$	2204.13072
	ĝĝ, ĝ→qqWZ	$z \tilde{x}_1^0$	0 e, μ SS e, μ	7-11 jets 6 jets	E_T^{miss}	140 140	ĩờ 8 ĩờ 8			.15	.97	$m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{g})-m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$	2008.06032 2307.01094
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$		0-1 <i>e</i> , μ SS <i>e</i> , μ	3 <i>b</i> 6 jets	$E_T^{\rm miss}$	140 140	وي حوا			1.25	2.45	m($ ilde{\chi}_{1}^{0}$)<500 GeV m($ ilde{g}$)-m($ ilde{\chi}_{1}^{0}$)=300 GeV	2211.08028 1909.08457
arks tion	$ ilde{b}_1 ilde{b}_1$		0 <i>e</i> , <i>µ</i>	2 <i>b</i>	$E_T^{ m miss}$	140	${ ilde b_1 \over ilde b_1}$	(0.68	1.255		m($\tilde{\chi}_1^0$)<400 GeV 10 GeV<Δm($\tilde{b}_1, \tilde{\chi}_1^0$)<20 GeV	2101.12527 2101.12527
	$\tilde{b}_1\tilde{b}_1,\tilde{b}_1\!\rightarrow\!b\tilde{\chi}$	${}^{0}_{2} \rightarrow bh \tilde{\chi}^{0}_{1}$	0 <i>e</i> , μ 2 τ	6 <i>b</i> 2 <i>b</i>	$E_T^{ m miss}$ $E_T^{ m miss}$	140 140	\tilde{b}_1 Forbidden \tilde{b}_1		0.13-0.85	.23-1.35	$\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_2, \tilde{\chi}^0_2)$ $\Delta m(\tilde{\chi}^0_2)$	${}^{0}_{1})=130 { m GeV}, { m m}({ ilde{\chi}}^{0}_{1})=100 { m GeV}, { m v}({ ilde{\chi}}^{0}_{1})=100 { m GeV}$	1908.03122 2103.08189
nbs	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$		0-1 <i>e</i> ,μ	≥ 1 jet	E_T^{miss}	140	\tilde{t}_1			1.25		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	2004.14060, 2012.03799
n. s	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \lambda$	$\tilde{\ell}_1^0$	$1 e, \mu$	3 jets/1 b	E_T^{miss}	140	Ĩ1	Forbidden	1.0			$m(\tilde{\chi}_1^0)=500 \text{ GeV}$	2012.03799, ATLAS-CONF-2023-043
3 rd gei direct j	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b v$	$\tilde{\tau}_1 \rightarrow \tau G$	$1-2\tau$	2 jets/1 b	Emiss	140		F	Forbidden	1.4		$m(\tilde{\tau}_1)=800 \text{ GeV}$	2108.07665
	$t_1 t_1, t_1 \rightarrow c \chi_1^-$	$\vec{c}\vec{c}, \vec{c} \rightarrow c \chi_1^2$	0 e, μ 0 e, μ	mono-jet	E_T^{miss}	140	\tilde{t}_1	0.55	0.85			$m(\mathcal{X}_1)=0 \text{ GeV}$ $m(\tilde{t}_1,\tilde{c})-m(\tilde{\mathcal{X}}_1^0)=5 \text{ GeV}$	2102.10874
	$ \begin{aligned} \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + \end{aligned} $	$ \widetilde{\chi}_{2}^{0} \rightarrow Z/h\widetilde{\chi}_{1}^{0} $ Z	1-2 <i>e</i> , μ 3 <i>e</i> , μ	1-4 <i>b</i> 1 <i>b</i>	$E_T^{ m miss} \ E_T^{ m miss}$	140 140	\tilde{t}_1 \tilde{t}_2	Forbidden	0.067- 0.86	1.18	$m(\tilde{\chi}_1^0)=36$	${\sf m}({ ilde \chi}_2^0){=}500~{ m GeV}$ 50 GeV, ${\sf m}({ ilde t}_1){-}{\sf m}({ ilde \chi}_1^0){=}~40~{ m GeV}$	2006.05880 2006.05880
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ		Multiple ℓ/jets ee, μμ	s ≥ 1 jet	$E_T^{ m miss}$ $E_T^{ m miss}$	140 140			0.96		m	$m(\tilde{\chi}_1^0)=0$, wino-bino $(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5$ GeV, wino-bino	2106.01676, 2108.07586 1911.12606
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WV	V	2 e, µ		$E_T^{\rm miss}$	140	$\tilde{\chi}_1^{\pm}$	0.42				m($\tilde{\chi}_1^0$)=0, wino-bino	1908.08215
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh		Multiple ℓ/jets	S	E_T^{miss}	140	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ Forbidden		1.0	5		$m(\tilde{\chi}_1^0)=70 \text{ GeV}, \text{ wino-bino}$	2004.10894, 2108.07586
- 5	$\chi_1^+\chi_1^+$ via $\ell_L/$	\tilde{v}	2 e, µ		ET	140			1.0			$m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_1^{\tilde{x}})+m(\tilde{\chi}_1^0))$	1908.08215
EW	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \chi_1^\circ$	e~0	27	0 ioto	E _T Emiss	140	T [TR, TR,L]	0.34 0.48	0.7			$m(\chi_1)=0$	ATLAS-CONF-2023-029
	$\ell_{L,R}\ell_{L,R}, \ell \rightarrow 0$	α_1	<i>ee</i> ,μμ	≥ 1 jet	$E_T^{T_{miss}}$	140	ℓ ℓ 0.26		0.7			$m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	1911.12606
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}$	/ZĜ	0 e, µ	$\geq 3 b$	E ^{miss}	140	Ĥ	0.55	0.94			$BR(\tilde{\chi}^0_{\downarrow} \rightarrow h\tilde{G})=1$	To appear
			4 e, μ 0 e, μ	≥ 2 large jet	s Emiss	140	H Ĥ	0.55	0.45-0.93			$BR(\chi_1^0 \rightarrow ZG)=1$ $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$	2103.11684 2108.07586
			2 e, µ	≥ 2 jets	E_T^{miss}	140	Ĥ		0.77		BRØ	$\tilde{\chi}_1^0 \rightarrow Z\tilde{G}$)=BR($\tilde{\chi}_1^0 \rightarrow h\tilde{G}$)=0.5	2204.13072
					1							. , , ,	
D	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$	prod., long-lived $ ilde{\chi}_1^{ imes}$	Disapp. trk	1 jet	E_T^{miss}	140		0.	.66			Pure Wino Pure higgsino	2201.02472 2201.02472
ive les	Stable g R-h	adron	pixel dE/dx		$E_T^{\rm miss}$	140	Ĩ				2.05		2205.06013
d-li ticl	Metastable \tilde{g}	R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	pixel dE/dx		$E_T^{\rm miss}$	140	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}]$,		2.2	$m(\tilde{\chi}_1^0)=100 \text{ GeV}$	2205.06013
pal	$\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell \tilde{G}$		Displ. lep		$E_T^{ m miss}$	140	ē, μ̃		0.7			$\tau(\tilde{\ell}) = 0.1 \text{ ns}$	2011.07812
74			pixel dE/dx		$E_T^{ m miss}$	140	τ τ	0.36				$\tau(\tilde{t}) = 0.1 \text{ ns}$ $\tau(\tilde{t}) = 10 \text{ ns}$	2011.07812 2205.06013
RPV	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp} / ilde{\chi}_1^0$, $ ilde{\chi}_1^{\pm}$	$\rightarrow Z\ell \rightarrow \ell\ell\ell$	3 e, µ	10000000		140	$\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}$ [BR($Z\tau$)=1, BR(Ze)=1]	0.62	.5 1.0			Pure Wino	2011.10543
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow 1$	WW/Zllllvv	$4 e, \mu$	0 jets	$E_T^{\rm miss}$	140	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$		0.95	1.55		$m(\tilde{\chi}_1^0)=200 \text{ GeV}$	2103.11684
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0,$	$\tilde{\chi}_1^0 \to q q q$		≥8 jets		140	$\tilde{g} = [m(\tilde{\chi}_1^0) = 50 \text{ GeV}, 1250 \text{ GeV}]$	0.77		1.6	2.25	Large $\lambda_{112}^{\prime\prime}$	To appear
	$t\bar{t}, \bar{t} \rightarrow t\chi_1, \chi_1$	$\rightarrow tbs$		wuitiple		36.1	7 [A ₃₂₃ =20-4, 10-2]	0.55	1.0			$m(\tilde{\chi}_1)=200$ GeV, bino-like	AILAS-CONF-2018-003
	$tt, t \rightarrow b\chi_1, \chi_1$	$\rightarrow bbs$		$\geq 4D$ 2 jets $\pm 2h$		36.7	\vec{t}		0.95			m(x1)=500 GeV	1710 07171
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow a\ell$		2 e, µ	2 <i>b</i>		36.1	Ĩ	0.12 0.01		0.4-1.45		$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$	1710.05544
	1-1,-1 .40		1μ	DV		136	\tilde{t}_1 [1e-10< λ'_{23k} <1e-8, 3e-10< λ'_2	.3 _k <3e-9]	1.0	1.6		BR($\tilde{t}_1 \rightarrow q\mu$)=100%, cos θ_t =1	2003.11956
	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_1^0$	$\lambda_{1,2}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{+} \rightarrow bbs$	1-2 <i>e</i> , <i>µ</i>	≥6 jets		140	$\tilde{\chi}_{1}^{0}$ 0.2-0.3	32				Pure higgsino	2106.09609
*Only a selection of the available mass limits on new states or 10^{-1}									1				
- Ully	a 3010011011	or the available IIId		JUNY JIAIG	0 01		v				E I I I I I I I I I I I I I I I I I I I		

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Mass scale [TeV]

 $\sqrt{s} = 13 \text{ TeV}$

ATLAS Preliminary

New Physics: Light or Heavy?

Energy line of SM and BSM particles

Our proposal: Study well-known observables to reveal New Physics

This work: Precise measurement of top quark observables

Light New Physics from $t\bar{t}$

The **LHC**, being a **"top quark factory"**, helps in precise measurement of various properties of the top quark

Pair-production of top quarks with each top t decaying to b and W^{\pm} which further decays leptonically

Bagnaschi, Corcella, Franceschini, DS, Phys.Rev.Lett. 133 (2024) 6, 06180

Targeted New Physics Scenario

Any BSM scenario with final state: opposite sign dileptons + 2 b -jets + \not{E}_T

Example: Minimal supersymmetric standard model (MSSM)

Pair-production of the lightest stop \tilde{t}_1 , with each \tilde{t}_1 decaying to the lightest chargino $\tilde{\chi}_1^{\pm}$ and b, and each $\tilde{\chi}_1^{\pm}$ decaying to the lightest SUSY particle (LSP) $\tilde{\chi}_1^0$ leptonically via a real or a virtual W^{\pm} boson

Several parameter space points generated using SPheno - 4.0.3 interfaced with SARAH -4.15.1

$$m_{\tilde{t}_1} = 180, 200, 220 \text{ GeV}$$

 $M_1 : 5 \text{ GeV} - 1 \text{ TeV}$
 $\mu : 100 \text{ GeV} - m_{\tilde{t}_1}$

$$m_{\tilde{q}} \approx m_{\tilde{l}} \approx 3.5 \text{ TeV} \neq m_{\tilde{t}_1}$$

 $m_{\tilde{g}} \approx 3.6 \text{ TeV}$

$$122 \text{ GeV} \le m_h \le 128 \text{ GeV}$$

Lightest SUSY Particle (LSP) : $\tilde{\chi}_1^0$ Next-to-Lightest SUSY Particle (NLSP) : $\tilde{\chi}_1^{\pm}$

Bounds from Experiments

A new physics scenario should not be excluded by

experimental searches SPECIFICALLY designed for this scenario, AS WELL AS

experimental searches **NOT** designed for this scenario

https://indico.cern.ch/event/1375202/ - April 25th 2024 - Roberto Franceschini - LHC top WG

E. Bagnaschi, G. Corcella, R. Franceschini, D.S. Phys.Rev.Lett. 133 (2024) 6, 06180

mportant

Simulation

All the parameter space points are simulated with Pythia — 8.3 with PDF=NNPDF2.3 QCD+QED LO.

Cuts imposed (motivated by experimental papers)

 $p_T(\ell) \ge 25 \text{ GeV}, \ |\eta(\ell)| < 2.5, \ R(j) = 0.4, \ p_T(j) \ge 25 \text{ GeV}, \ |\eta(j)| < 2.5,$ $\Delta R(\ell j) > 0.2, \ \Delta R(\ell \ell) > 0.1, \ \Delta R(jj) > 0.4$

Jet clustering: Anti- k_T jet algorithm

From $m_{b\ell}$ distribution :

Significance =
$$\sqrt{\sum_{i} \left[S_i / \left(B_i \times u_{B_i}\right)\right]^2}$$
 at $\mathcal{L} = 139 \ fb^{-1}$

 $S_i = No.$ of signal events in the i^{th} bin

 $B_i = No.$ of background events in the i^{th} bin

 u_{B_i} = Relative uncertainty in the background in the i^{th} bin

(extracted from ATLAS and CMS)

E. Bagnaschi, G. Corcella, R. Franceschini, D.S. Phys.Rev.Lett. 133 (2024) 6, 06180

Tech. Rep. ATLAS-CONF-2019-038M. Aaboud et. al. (ATLAS), Eur. Phys. J. C 78, 129 (2018)A. M. Sirunyan et. al. (CMS), Eur. Phys. J. C 79, 368 (2019)

Benchmark Points $(m_{\tilde{t}_1} = 200 \text{ GeV})$

E. Bagnaschi, G. Corcella, R. Franceschini, D.S. Phys.Rev.Lett. 133 (2024) 6, 06180

Conclusion

Parameter space for winos, lightest stop and gluino to be fully covered by FCC-hh

However, before moving on to future colliders we must ensure there is no new physics hidden in already measured observables. Here we show that a thorough study of well-known kinematic observables may hint towards the existence of Light New Physics.

THANK YOU