

Performance of the Muon Detector for the LHCb Upgrade II

Phd student: Francesco Debernardis

Supervisors:Ch.mo Prof.Saverio SimoneCh.ma Prof.ssaAlessandra PastoreCh.mo Prof.Marco Pappagallo

PhD presentation XXXVI cycle Coordinator: Ch.mo Prof.

Giuseppe Gonnella

11/04/2024

- Studies on the design of the LHCb muon detector at high luminosity
 - Rate estimate
 - Proposal of a new readout scheme
 - Dead time and muon ID
- Search for the rare decay mode $D_{s1}(2460)^+ \rightarrow D_s^+ \mu^+ \mu^-$
 - $_{\circ}$ Optimisation of the D_s selection
 - $_{\circ} D_{s}^{+}\mu^{+}\mu^{-}$ selection
 - $_{\circ}~$ Observation of new decay modes

- Studies on the design of the LHCb muon detector at high luminosity
 - Rate estimate
 - Proposal of a new readout scheme
 - Dead time and muon ID
- Search for the rare decay mode $D_{s1}(2460)^+ \rightarrow D_s^+ \mu^+ \mu^-$
 - $_{\circ}$ Optimisation of the D_s selection
 - $_{\circ} D_{s}^{+}\mu^{+}\mu^{-}$ selection
 - Observation of new decay modes

 R^{1}

r2

r3

R4

м2

LHCb muon detector at Run 3

4 stations of 4-gaps multi-wire proportional chambers (MWPCs) with gas mixture $Ar:CO_2:CF_4$ (40:55:5). Iron absorbers 80 cm thick between stations

м5

LHCb muon detector at Run 3

The **muon identification** acts at

different levels. The first one is the *IsMuon* request such that, given an extrapolated track:

- The nearest track hit on each station is searched in a *FoI*: area around the extrapolated point on the station
- 2. The presence of hits on stations is required, according to the momentum:

p [GeV/c]	The track is a muon:
<i>p</i> < 3	never
3 < p < 6	M2 & M3
6 < <i>p</i> < 10	M2 & M3 & (M4 M5)
<i>p</i> > 10	M2 & M3 & M4 & M5

Francesco Debernardis

A great opportunity for LHCb:

- Measurements *precision* will improve •
- More sensibility to *new physics* phenomena ٠

Observable	Current LHCb	Upgrade I	Upgrade II	
	$(up to 9 fb^{-1})$	$(50{\rm fb}^{-1})$	$(300{\rm fb}^{-1})$	
CKM tests	,	. ,		
$\gamma (B \to DK, etc.)$	4°	1°	0.35°	
$\phi_s \ (B^0_s \to J/\psi \phi)$	$32\mathrm{mrad}$	$10\mathrm{mrad}$	$4\mathrm{mrad}$	
$ V_{ub} / V_{cb} $ $(\Lambda_b^0 \to p\mu^-\overline{\nu}_\mu, etc.)$	6%	2%	1%	
$a^d_{\rm el} \left(B^0 \to D^- \mu^+ \nu_\mu \right)$	$36 imes 10^{-4}$	$5 imes 10^{-4}$	2×10^{-4}	
$a_{\rm sl}^{s} \left(B_s^0 ightarrow D_s^- \mu^+ u_\mu ight)$	$33 imes 10^{-4}$	$7 imes 10^{-4}$	$3 imes 10^{-4}$	
Charm				
$\overline{\Delta A_{CP}} \left(D^0 \to K^+ K^-, \pi^+ \pi^- \right)$	29×10^{-5}	8×10^{-5}	3.3×10^{-5}	
$A_{\Gamma} (D^0 \to K^+ K^-, \pi^+ \pi^-)$	11×10^{-5}	3.2×10^{-5}	1.2×10^{-5}	
$\Delta x \ (D^0 \to K^0_{\rm S} \pi^+ \pi^-)$	$18 imes 10^{-5}$	4.1×10^{-5}	$1.6 imes 10^{-5}$	
Rare Decays				
$\mathcal{B}(B^0 \to \mu^+ \mu^-)/\mathcal{B}(B^0_s \to \mu^+ \mu^-)$) 69%	27%	11%	
$S_{\mu\mu} \ (B^0_s o \mu^+ \mu^-)$	·		0.2	
$A_{\rm T}^{(2)} \ (B^0 \to K^{*0} e^+ e^-)$	0.10	0.043	0.016	
$A_{\mathrm{T}}^{\mathrm{Im}}~(B^0 ightarrow K^{*0} e^+ e^-)$	0.10	0.043	0.016	
$\mathcal{A}^{\Delta\Gamma}_{\phi\gamma}(B^0_s o \phi\gamma)$	$^{+0.41}_{-0.44}$	0.083	0.033	
$S_{\phi\gamma}^{+'}(B_s^0 \to \phi\gamma)$	0.32	0.062	0.025	
$\alpha_{\gamma}(\Lambda_b^0 \to \Lambda \gamma)$	$^{+0.17}_{-0.29}$	0.097	0.038	
Lepton Universality Tests				
$R_K (B^+ \to K^+ \ell^+ \ell^-)$	0.044	0.017	0.007	
$R_{K^*} (B^0 \to K^{*0} \ell^+ \ell^-)$	0.12	0.022	0.009	_
$R(D^*)$ $(B^0 ightarrow D^{*-} \ell^+ u_\ell)$	0.026	0.005	0.002	7

LHC

INFŃ

Upgrade II of muon detector

during

my PhD

- Insufficient rate capability of present detector
- Chambers granularity inadequate for the future high rates
- High pile-up conditions will cause:
 - inefficiency effects by electronics dead time
 - inefficiency effects of muon mis-identification

- New readout scheme simulation
- New detector (µ**RWELL**) for inner regions
- Electronics dead time effects
- mis-Identification effects

At the LHC Run 3 start:

rates measurements of each chambers gap, at seven luminosity configurations

A linear fit for the rates extrapolation at Run 5 luminosity: $L= 1.5 \times 10^{34} \text{ cm}^{-2} \text{sec}^{-1}$

Rates estimate at Run 5

Number of visible <i>pp</i> interactions per bunch crossing	
μ = 1.10 •	L = 1.05×10^{32} cm ⁻² s ⁻¹
μ = 1.45	L = 1.39x10 ³² cm ⁻² s ⁻¹
μ = 2.29 •	L = 2.19×10^{32} cm ⁻² s ⁻¹
μ = 2.92 •	L = 2.79×10^{32} cm ⁻² s ⁻¹
μ = 3.50 •	L = 3.35×10^{32} cm ⁻² s ⁻¹
μ = 4.05 •	L = 3.87×10^{32} cm ⁻² s ⁻¹
μ = 4.56 •	L = 4.36×10^{32} cm ⁻² s ⁻¹

LHC

NFN

Maximum rates extrapolated at **<u>Run 5</u>**,

in red, reduction in the hypothesis of a filter upstream wrt M2

	Maxin	num chamber rate	(kHz/cm²)	
	M2	МЗ	M4	M5
R1	594.0 -> 344.5	274.5	203.5	232.7
R2	255.6 -> 79.2	64.2	34.1	39.0
R3	53.4 -> 19.2	8.9	6.2	8.9
R4	9.9	3.0	1.7	6.8

Francesco Debernardis

(detector design (<u>Ru</u>	<u>n 1</u>):
		M2 (kHz/cm ²)
	R1	37.5
	R2	26.5
	R3	6.5
	R4	1.2

Maximum rates (M2) of muon

 $\sigma_{\rm D}$

Rates estimate at Run 5

Rates of M2 gaps (Hz/cm²)

1001	910	1247	18	893	25	12	1403	1025	1096
917	804	1165	1	776	21	10	1280	849	1036
1389	784	1307	1	931	21	06	1299	841	1533
1559	747	1322	21	153	24	56	1375	811	1743
2347	911	1878	30	049	33	57	1832	1028	2520
2149	964	2212	39	923	41	69	2213	1117	2377
3008	1346	3158	60	023	65	85	3145	1505	3162
2771	1266	3808	8	021	91	70	3865	1686	2988
3612	2067	5441	12	527	132	263	5342	2258	3856
6452	2411	6748	17	733	207	786	7056	2598	3711
4870	3228	10223	29	439	326	366	10271	3561	5056
4546	3825	12713	47	328	533	362	12902	4084	4784
6446	5028	17773	66493	120583	148811	77788	19378	5429	6676
5886	5787	23113	99470	217584	255560	107048	23768	6213	6244
8355	7272	31962	147585	321062 538980	508077 340550	170105	32190	7757	8502
7262	7473	34047	187623	594044	573691	205862	35821	7902	7647
9783	7957	39218	193571	496249	549110	217988	37922	8619	9938
6942	6921	30431	143561	341093 558687	546084 344551	152596	30842	7337	7299
7764	6280	25658	103585	209874	248696	114114	25527	6609	8103
5358	4802	17515	65005	122387	135696	73421	17909	5125	5503
5779	4111	14025	49	121	489	987	14323	4421	5783
3889	3116	9632	30	130	310)72	9905	3232	4095
4183	2658	8154	19	704	214	154	8021	2835	4469
5035	1972	4899	12	240	138	314	5210	2104	3253
3301	1674	2767	91	149	95	54	4351	1880	3542
2431	1283	2943	57	789	64	30	2771	1397	2646
2470	1138	2533	44	446	47	89	2448	1250	2668
1776	891	1725	29	909	31	07	1702	927	1901
1861	821	1525	2:	350	24	74	1492	876	2060
1200	719	1195	1	661	18	73	1173	760	1451
1210	864	1387	1	765	18	54	1316	922	1351
1009	1161	1857	21	117	23	22	1755	1188	1094

Rates of M2 R1-R2 gaps (Hz/cm²)

66493	120583	148811	77788
99470	217584	255560	107048
147585	321062 <mark>538980</mark>	508077 340550	170105
187623	<mark>594044</mark>	<mark>573691</mark>	205862
193571	<mark>496249</mark>	<mark>549110</mark>	217988
143561	341093 <mark>558687</mark>	<mark>546084</mark> 344551	152596
103585	209874	248696	114114
65005	122387	135696	73421

Maximum rates extrapolated at **Run 5**,

in red, reduction in the hypothesis of a filter upstream wrt M2

	Maxir	num chamber rate	(kHz/cm²)	
	M2	M3	M4	M5
R1	594.0 -> 344.5	274.5	203.5	232.7
R2	255.6 -> 79.2	64.2	34.1	39.0
R3	53.4 -> 19.2	8.9	6.2	8.9
R4	9.9	3.0	1.7	6.8

Francesco Debernardis

Minimum bias

Low threshold:

Background study at Run 5

Fraction of signals of the present readout scheme by single-gap cases of background particles

• Sample of 2600 events at $L = 1.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

97% are background: defined as all except muons with $E_{\mu} > 3$ GeV

	M2 (%)	M3 (%)	M4 (%)	M5 (%)
R1	49.5 ± 0.1	56.7 ± 0.1	58.6 <u>+</u> 0.2	59.4 ± 0.2
R2	49.7 ± 0.1	70.4 ± 0.2	75.0 ± 0.2	76.0 ± 0.2
	49.60 ± 0.05	61.1 ± 0.1	63.6 ± 0.1	64.3 ± 0.1
R3	57.5 ± 0.1	73.0 ± 0.2	76.8 ± 0.3	77.1 ± 0.3
R4	49.7 ± 0.1	66.6 ± 0.3	76.1 ± 0.4	69.0 ± 0.4
\rightarrow	53.6 ± 0.1	70.8 ± 0.2	76.6 ± 0.2	74.0 ± 0.3

Studies for a new readout scheme

New readout scheme for Upgrade II:

- readout for each gap
- signal in at least 2 gaps out of 4 at the same time
- at least two projective physical pads fired in the corresponding gaps.

Physical pads

LHC

31/2352 8395

Fired

projective pads

Muon Detector simulation

- Physical pads (anodes and cathodes) simulated in chambers at present geometrical configuration (Run 3)
- Electrical and geometrical crosstalk simulated for physical • pad firing, at particles chambers crossing
- μ -RWELL in inner regions R1-R2 in the 4-gaps configuration
- Signal generation delay, into 25 ns time window, simulated • for present MWPCs and μ -RWELL
 - Efficiency of **85%** for MWPCs and **95%** for μ -RWELLs
- Projectivity condition, between not only consecutive physical • pads, simulated for signal generation (not in R4 of M2, M3 and M4 where chambers are fixed at the present OR-ed **Bi-gap scheme**)

Background reduction with the new readout scheme

 μ -RWELLtime-eff= 95%MWPCstime-eff= 85%

The new readout scheme has a very significative effect on the background signals removal in the chambers.

A great merit is given by the AND request.

What is the effect on signal muons?

	M2 (%)	M3 (%)	M4 (%)	M5 (%)
R1	66.40 ± 0.07	77.0 ± 0.1	78.20 ± 0.13	78.6 ± 0.1
R2	60.70 ± 0.07	82.10 ± 0.13	86.5 <u>+</u> 0.2	86.8 ± 0.2
	63.50 ± 0.05	78.60 ± 0.08	80.7 ± 0.1	81.0 ± 0.1
\frown				
R3 \	64.40 ± 0.09	79.0 ± 0.2	80.8 ± 0.3	81.0 ± 0.3
R4	0.0	0.0	0.0	72.30 ± 0.43
\rightarrow	32.10 ± 0.05	50.9 ± 0.1	56.0 ± 0.1	77.70 ± 0.11

Efficiency loss with the new readout scheme

		μ-RWE MWPC	LL time-eff= 95% s time-eff= 85%
Stations to be crossed for current μ -identification		CERN/LHCC	2021-012 LHCb TDR 23
p [GeV/c]	overall detector (%)	inner regions R1-R2 (%)	outer regions R3-R4 (%)
3 < p < 6 (M2 & M3)	1.13 ± 0.08	1.73 ± 0.35	1.09 ± 0.08
6 < p < 10 (M2 &M3 & (M4 M5))	1.06 ± 0.06	0.70 ± 0.16	1.10 ± 0.07
<i>p</i> > 10 (M2 & M3 & M4 & M5)	2.23 ± 0.04	0.52 ± 0.03	4.04 ± 0.08

 $J/\psi
ightarrow \mu^+\mu^-$:

• Sample of 200 000 of $J/\psi \rightarrow \mu^+\mu^-$ candidate.

Inefficiency less than 2%, against the large background reduction <u>up to 80%</u>

The effects of: -dead time and -muons mis-identification are not included

μ RWELL for Upgrade II

JINST (2019) 289 14 P05014

- Cathode plan
- Derive region
- μ RWELL system:
 - Wells to copper clad foil
 - Resistive plate
 - Readout PCB of pad/stip

The ionization avalanche in the drift region is amplified in the wells and limited by the resistive plate.

Performances:

- High rate capability (up to 1 MHz/cm²)
- High granularity, fundamental for the dead time inefficiency reduction

Inefficiency induced by dead time

From Run 5 rates, the inefficiency by the electronics dead time is calculated

 The FEE dead time is assumed conservatively of 100 ns

<mark>JINST (2016) 11 P04010</mark>

A software has been developed to evaluate the dead time effects on decay modes of special interest

Maximum deadtime inefficiency % <u>HCAL - MWPC</u>						
	M2	МЗ	M4	M5		
R1	17.14	6.65	7.50	8.66		
R2	17.81	4.62	5.69	7.34		
R3	7.21	1.72	3.49	5.68		
R4	8.24	3.37	2.30	8.55		

Мах	Maximum deadtime inefficiency % <u>HCAL - μRWELL</u>					
	M2	M3	M4	М5		
R1	1.18	0.48	0.79	0.95		
R2	1.22	0.32	0.31	0.41		
R3	7.21	1.72	A 3.49	5.68		
R4	8.24	3.37	2.30	8.55		

→ Moving to high-granularity µRWell chambers -----

Presented at:

IFAE 2023 – Catania

<u>6th Workshop on</u> LHCb upgrade II -Barcellona

SCENARIO		$B^0_s o \mu^+ \mu^-$ (%)	$D^0 o \mu^+ \mu^-$ (%)	$K^0_s o \mu^+ \mu^-$ (%)	$B^0_s ightarrow J/\psi(\mu^+\mu^-)\phi$ (%)
ЦСАТ	MWPC	30.50 ± 0.06	32.10 ± 0.25	25.80 ± 0.35	31.0 ± 0.1
HCAL	μ -RWELL	10.30 ± 0.04	9.50 ± 0.16	8.50 ± 0.22	9.60 ± 0.05
SHIELD	MWPC	19.00 ± 0.05	19.40 ± 0.21	14.0 ± 0.3	18.80 ± 0.07
	μ -RWELL	8.60 ± 0.04	7.60 ± 0.14	6.4 ± 0.2	7.80 ± 0.05
w/~ M2	MWPC	13.40 ± 0.04	17.2 ± 0.2	10.70 ± 0.24	16.4 ± 0.1
W/O IVIZ	μ -RWELL	6.00 ± 0.03	5.30 ± 0.12	3.20 ± 0.14	5.30 ± 0.04

The muon mis-IDentification

The **muon identification** acts at different levels:

- 2. For each IsMuon track candidate, the χ^2_{corr} is calculated, from distances between the extrapolated points and hits on stations JINST 15 (2020) T12005
- 3. Cut on χ^2_{corr} is applied

<u>False muon hits</u> can be identified on stations at very crowded environment.

Development of a software to simulate the full hits generation at Run 5, in 25 ns time window :

- New Fol definitions
- Different χ^2_{corr} cut

- Studies on the design of the LHCb muon detector at high luminosity
 - Rate estimate
 - Proposal of a new readout scheme
 - Dead time and muon ID

• Search for the rare decay mode $D_{s1}(2460)^+ \rightarrow D_s^+ \mu^+ \mu^-$

- $_{\circ}$ Optimisation of the D_{s} selection
- $_{\circ} D_{s}^{+}\mu^{+}\mu^{-}$ selection
- $_{\circ}~$ Observation of new decay modes

The puzzle of the $D_{s1}(2460)$ meson LHCD

Theoretical predictions

Broad cs meson state ٠

C

Ī

Massive enough that dominant ٠ strong decays would have been isospin-conserving in D^*K final states.

Phys. Rev. Lett. 66 (1991) 1130 Phys. Rev. D 12 (1975) 147

In the heavy quark limit model

orbit coupling only of the light \bar{s} quark

The puzzle of the $D_{s1}(2460)$ meson

Surprising observation: $D_{s1}(2460)^+ \rightarrow D_s^{*+}\pi^0$ *CLEO* (2003)

- mass smaller (≈ 150 MeV) than all theoretical predictions
- observed in the isospinviolating $D_s^*\pi^0$ channel
- narrow state

$0_{s1}(2460)^+$	
	decay modes
${D_s^*}^+ \pi^0$	$(48 \pm 11)\%$
$D_s^+\gamma$	$(18 \pm 4)\%$
$D_s^+\pi^+\pi^-$	$(4.3 \pm 1.3)\%$
тот	(70 + 16)%
101	$(70 \pm 16)\%$

In a cs̄ scenario: isospin-violating decay is suppressed.

For the $D_{s1}(2460)$: isospin-violating decay $D_s^*\pi^0$ is much frequent, suggesting a 4-quarks system ($c\bar{s}u\bar{u}$ or $c\bar{s}d\bar{d}$)

Dalitz decays

• $\pi^0 \rightarrow \gamma \gamma^* \rightarrow \gamma e^+ e^-$ decay process predicted by R.H. Dalitz. The virtual photon directly produces an electron-positron pair.

(nowadays)

Any decay process with two leptons in the final state, produced by a virtual photon.

Optimisation of the D_s^+ selection

<u>AFTER</u>

New observations:

New observations:

New observations:

$$\frac{\mathfrak{B}(D_{s1}(2460) \rightarrow D_s^* \mu^+ \mu^-)}{\mathfrak{B}(D_{s1}(2460) \rightarrow D_s \mu^+ \mu^-)} = BR_2 2460 \cdot \frac{\epsilon_1}{\epsilon_2} = 0.48 \pm 0.10$$
peak significance:
$$n_{\sigma} = 7.7\sigma$$
NEW DECAY OBSERVATION

First observation of the decay: $D_{s1}(2536) \rightarrow D_s^+ \mu^+ \mu^-$

Unexpected observation, given that the corresponding radiative decay is not seen

Study of the $\mu^+\mu^-$ spectrum:

Fits using models built for the Dalitz processes in the QCD framework [Phys. Rev. D 108, 074027 - 2023]

A virtual photon couples to a c and \bar{s} quark. The latter through an intermediate ϕ meson, according to the Vector Meson Dominance model.

Dalitz nature can be supported for decays:

 $\begin{array}{ccc} \circ & D_{s1}(2460)^+ \to D_s^{+*}\mu^+\mu^- \\ \circ & D_{s1}(2460)^+ \to D_s^+\mu^+\mu^- \end{array}$

Dalitz nature is disfavoured for decay: $D_{s1}(2536)^+ \rightarrow D_s^+ \mu^+ \mu^-$

- Studies for the muon detector at high luminosity
 - $_{\circ}$ New readout scheme and μ -RWELL in the inner regions
 - Large background hits reduction up to 80%
 - ^o Inefficiency induced by dead time under study. New scenarios proposed
 - $_{\circ}$ Preliminary results on μ mis-ID studies pave the way to deeper investigations and new ideas
- Search for the rare decay mode $D_{s1}(2460)^+ \rightarrow D_s^+ \mu^+ \mu^-$
 - $_{\circ}~$ Precise measurements of $m_{D_{S1}(2460)}$ and $arGamma_{D_{S1}(2460)}$
 - New observation of the $D_{s1}(2460)^+ \rightarrow D_s^{*+}\mu^+\mu^-$ decay
 - Precise measurement of $\mathfrak{B}(D_{s1}(2460) \rightarrow D_s^* \mu^+ \mu^-)/\mathfrak{B}(D_{s1}(2460) \rightarrow D_s \mu^+ \mu^-)$
 - $_{\circ}~$ New observation of the $D_{s1}(2536)^{+} \rightarrow D_{s}^{+}\mu^{+}\mu^{-}$ decay

Thank you for your attention

BACKUP

Background study at Run 5

Minimum bias Low threshold: • Sample of 2600 events at $L = 1.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ \approx **800** charged particles cross the detector at each bunch crossing: e^{\pm} 69% π^{\pm} 12% p^{\pm} 12% 6% (all) μ^{\pm} 3% (bckg) K^{\pm} 0.6% 0.4% nucl

Back distr	ground pa ibution in	articles regions:	
R	1:	37%	CC (4)
R	2:	29%	66%
R	3:	18%	2.40/
R	4:	16%	5 34%
Elect	rons:	Pion	s:
R1:	36 %	R1:	48 %
R2:	28 %	R2:	32 %
R3:	18 %	R3:	13 %
R4:	18 %	R4:	7 %
Proto	ons:	Muo	NS ($E_{\mu} < 3$ GeV) :
R1:	41 %	R1:	18 %
R2:	32 %	R2:	23 %
R3:	17 %	R3:	21 %
R4:	10 %	R4:	38 %

A chamber is fired if at least one couple of **not only consecutive** gaps, have at least two fired projective pads.

Pads that could be fired (P=1) or not fired (P=0), in gaps G_i and G_j . Of them, violet pads in a gap are projective with respect to those in the other gap.

Muon Detector simulation

- Physical pads (anodes and cathodes) simulated in chambers at present geometrical configuration (Run 3)
- Electrical and geometrical crosstalk simulated for physical ٠ pad firing, at particles chambers crossing
- μ -RWELL in inner regions R1-R2 in the 4-gaps configuration
- Signal generation delay, into 25 ns time window, simulated • for present MWPCs and μ -RWELL
 - Efficiency of 85% for MWPCs and 95% for μ -RWELLs
- Projectivity condition, between not only consecutive physical • pads, simulated for signal generation (not in R4 of M2, M3 and M4 where chambers are fixed at the present OR-ed **Bi-gap scheme**)

Le μ RWELL

Un rivelatore μ RWELL è un MicroPattern Gas Detector (MPGD) che consiste principalmente dei seguenti elementi:

JINST (2019) 289 14 P05014

- Piano catodico
- Regione di deriva
- Scheda μ RWELL, compattata con:
 - foglio di kapton forato e rivestito in rame
 - Strato resistivo
 - PCB di readout con segmentazione a pad/stip

La ionizzazione a valanga, generata nella regione di drift, è amplificata nei fori ed è controllata grazie allo strato resistivo.

La perdita di efficienza ad alti rates (Run 5) è risolta con una fitta rete di elettrodi di messa a terra che evacuano rapidamente le valanghe.

Francesco Debernardis

Prestazioni:

- elevata rate capability (fino a 1 MHz)
- elevata efficienza in risposta temporale $\epsilon = 96\%$ con miscela Ar:CO₂:CF₄ = 45:15:40 in fase di studio con miscela Ar:CO₂:iso = 68:30:02

JINST (2019) 289 14 P05014

- Dimensioni fino a 1.2x0.5 m
- elevata granularità

che ha un effetto molto significativo sull'inefficienza da tempo morto (dopo ->)

Confronto tra le dimensioni (mm²):

- Pads fisiche attuali delle MWPCs
- Pad delle µRWELL (in rosso)

Reg / Sta	M2	M3	M4	M5
R1	38x31 -> 9x9	41x34 -> 10x10	29x36 -> 11x10	31x39 -> 12x11
R2	76x31 -> <mark>9x18</mark>	82x34 -> 10x19	58x73 -> 11x21	62x77 -> 12x22
R3	25x125	27x135	58x145	62x155
R4	50x250	54x270	58x290	62x309

The muon mis-IDentification

The **muon identification** acts at different levels:

2. For each IsMuon track candidate, the χ^2_{corr} is calculated, from distances between the extrapolated points and hits on stations JINST 15 (2020) T12005

$$\chi_{corr}^2 \approx \frac{1}{N} \sum_{i} \left\{ \left(\frac{x_i - x_{track}}{pad_x} \right)^2 + \left(\frac{y_i - y_{track}}{pad_y} \right)^2 \right\}$$

False muon hits can be identified on stations at very crowded environment.

Development of a software to simulate the full hits generation at Run 5, in 25 ns time window :

- New Fol definitions
- Different χ^2_{corr} cut

D_s **SPECTROSCOPY** In the heavy quark limit model

At high energy scale, α_s is small: perturbative interactions and at <u>short distance</u> <u>scales</u> $\ll R_{had}$

C

QCD@Work

At small energy scale,

 α_s is large: interactions with non perturbative confinement phenomena of quarks and gluons at large length scale $R_{had} \sim \frac{1}{\Lambda_{OCD}} \approx 1 \text{ fm}$

Francesco Debernardis

- The heavy quark is much smaller than the hadron size and it is surrounded by a strongly interacting cloud of light quarks, antiquarks, and gluons with which the light quark interacts.
- The heavy-quark spin effect is not seen by the light quarks, such that the <u>heavy-quark spin</u> decouples.

 $m_c \approx 1.3 \ GeV/c^2$ $m_{\rm s} \approx 93 \, MeV/c^2$

The *P*-wave (L = 1) states

D_{s} SPECTROSCOPY

MESON STATE 2S+1

L: orbital angular momentum between constituent quarks (S, P, D correspond to L = 0, 1, 2)

5

- S = 0, 1: sum of quark spins
- J: total spins of meson state
- $J_{\overline{S}}$: sum of *L* with the spin of light \bar{s} quark

P: parity

Francesco Debernardis

109.1

Measurements:

• $m_{D_{s1}(2460)} = 2459.9 \pm 0.2 \text{ MeV/c}^2$ • $\Gamma_{D_{s1}(2460)} = 0.5 \pm 0.7 \text{ MeV/c}^2 \sim 0$ log profile likelihood scan at the $\Gamma_{D_{s1}(2460)}$ variation, such to evaluate the upper limit at 95% CL: $\Gamma_{D_{s1}(2460)} < 1.77$

140

120

100

80

40

Peak presence associated to the decay events: $D_{s1}(2460)^+ \rightarrow D_s^{*+} (\rightarrow D_s^{*+} \gamma / \pi^0) \mu^+ \mu^-$

Peak significance estimation is necessary

It is done with the difference of the log-likelihood at minimum between the previous best-fit and the one without the PDF contribution.

Then:

 $n_{\sigma} = 7.7\sigma > 5\sigma$ **NEW DECAY OBSERVATION**

Francesco Debernardis

Measurements:

Relative branching ratio measurement of: $D_{s1}(2460)^+ \rightarrow D_s^{*+} (\rightarrow D_s^{*+} \gamma / \pi^0) \mu^+ \mu^-$

- Trigger constraint application: only the Run 2 events satisfying the decay criteria are selected
- Best-fit to triggered data, to measure the ratio BR_2460:

$$B_2460 = \frac{nsig(D_{S1}(2460)^+ \to D_S^{*+}\mu^+\mu^-)}{nsig(D_{S1}(2460)^+ \to D_S^+\mu^+\mu^-)} = 0.23 \pm 0.05 \%$$

• Evaluations of the LHCb reconstruction efficiencies, ϵ_1, ϵ_2 for both $D_{s1}(2460)^+$ decays, by **MC samples**:

 $\epsilon_{1(2)}\left(D_{s1}(2460)^+ \to D_s^{(*)+}\mu^+\mu^-\right) = \frac{\text{#event reconstructed}}{\text{#event generated}}$

Encouraged to search for the decay signal: $D_{s1}(2536) \rightarrow D_s^* \mu^+ \mu^-$

Fit result:

ROC curves from the BDT and the BDTG algorithms used for the multivariate $D_s^+\mu^+\mu^-$ selection. It is evident that the algorithms have about same performance (integral ROC ~ 0.97). However, the BDT classification algorithm is chosen.

Fit model

Measurements:

Relative branching ratio measurement of: $D_{s1}(2536)^+ \rightarrow D_s^{*+} (\rightarrow D_s^{*+} \gamma / \pi^0) \mu^+ \mu^-$

• Best-fit to triggered data, to measure the ratio BR_2536:

$$B_{2536} = \frac{nsig(D_{S1}(2536)^+ \to D_S^{*+}\mu^+\mu^-)}{nsig(D_{S1}(2536)^+ \to D_S^+\mu^+\mu^-)} = 0.0 \pm 0.1 \% \sim 0.0$$

- log profile likelihood scan for the upper limit at 95% CL: BR_2536 < 0.193
- Evaluations of the LHCb reconstruction efficiencies, ϵ'_1, ϵ'_2 for both $D_{s1}(2536)^+$ decays, by **MC samples**:

 $\epsilon'_{1(2)}\left(D_{s1}(2536)^+ \to D_s^{(*)+}\mu^+\mu^-\right) = \frac{\text{#event reconstructed}}{\text{#event generated}}$

Summary:

Observation of 3 signals/structures:

- First observation of $D_{s1}(2460) \rightarrow D_s \mu^+ \mu^-$ decays.
- Evidence/observation of $D_{s1}(2460) \rightarrow D_s^* \mu^+ \mu^-$ decays.
- First observation of the puzzling decay of $D_{s1}(2536) \rightarrow D_s \mu^+ \mu^-$ despite the lack of $D_s \gamma$ decay observation.

- Radiative decays largely suppressed due to dominance of strong decays to $D^{*+}K^0$ decay mode [PR D 2016, 93.3: 034035]
- $D_{s1}(2536)^+ \to D_s^+ \eta$ ($BR(\eta \to \mu^+ \mu^-) \cong 6 \cdot 10^{-6}$) <u>forbidden</u> for the angular momentum conservation: $\vec{J}_{D_{s1}(2536)} = \vec{1} = \vec{J}_{final} = \vec{L} + \vec{s}_{D_s} + \vec{s}_{\eta} = \vec{L}$ $P_{D_{s1}(2536)} = +1 \neq P_{final} = (-1)(-1)(-1)^L = -1$
- $D_{s1}(2536)^+ \rightarrow D_s^+ \omega$ (BR($\omega \rightarrow \mu^+ \mu^-$) $\cong 7 \cdot 10^{-5}$) possible, according to the angular momentum, parity and isospin conservation:

$$\vec{J}_{D_{s1}(2536)} = 1 = \vec{J}_{final} = \vec{L} + \vec{s}_{D_s} + \vec{s}_{\omega} = \vec{L} + 1$$

$$P_{D_{s1}(2536)} = +1 \neq P_{final} = (-1)(-1)(-1)^L = +1$$

$$\vec{L} = 0, 2$$

$$I_{D_{s1}(2536)} = 0 = I_{final} = 0 + 0$$

• $D_{s1}(2536)^+ \rightarrow D_s^+ \rho$ (BR($\rho \rightarrow \mu^+ \mu^-$) $\cong 5 \cdot 10^{-5}$) <u>possible</u>, according to the angular momentum and parity but the isospin conservation: $I_{D_{s1}(2536)} = 0 \neq I_{final} = 0 + 1 = 1$ N.B. $D_{s1}(2460)^+ \rightarrow D_s^{*+} \pi^0$

is also an isospin violating

decay but $BR \sim 50\%$

The puzzle of the $D_{s1}(2460)$ meson

Surprising observation: $D_{s1}(2460)^+ \rightarrow D_s^{*+}\pi^0$ *CLEO* (2003)

- mass smaller than all theoretical predictions
- observed in the isospinviolating $D_s^*\pi^0$ channel

• narrow state

Theoretical predictions

• Broad cs meson state

 $(D_{s1}(2460)^{+})$

 $D_{s}^{*+}\pi^{0}$

 $D_{S}^{+}\gamma$

 $D_s^+\pi^+\pi^-$

TOT

PDG

• Massive enough that dominant strong decays would have been isospin-conserving in D^*K final states.

Presented at:

EPJ Web Conf. 270 (2022) 00013

In a cs scenario: isospin-violating decay is suppressed.

For the $D_{s1}(2460)$: isospin-violating decay

 $D_s^*\pi^0$ is much frequent, suggesting a 4-quarks system ($c\bar{s}u\bar{u}$ or $c\bar{s}d\bar{d}$)

 $D_{s1}(2460)^{\pm}$ MASS 2459.5 \pm 0.6 MeV/c² $D_{s1}(2460)^{\pm}$ WIDTH < 3.5 MeV/c²

Francesco Debernardis

 $(48 \pm 11)\%$

 $(18 \pm 4)\%$

 $(4.3 \pm 1.3)\%$

 $(70 \pm 16)\%$

decay modes

Estimate of rates at Upgrade II

- Run 3 scalers data collected during November 2022, used to extrapolate rate values at the U2 luminosity
- Scaler data: counts of OR-ed bi-gaps
 - o collected in 20 sec
 - $\circ~$ at 7 different values of luminosity

Protons colliding p bunch (µ real):	ber
μ = 1.10	• L = $1.05 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$
μ = 1.45	• L = 1.39x10 ³² cm ⁻² s ⁻¹
μ = 2.29	• L = 2.19x10 ³² cm ⁻² s ⁻¹
μ = 2.92	• L = 2.79x10 ³² cm ⁻² s ⁻¹
μ = 3.50	• L = 3.35x10 ³² cm ⁻² s ⁻¹
μ = 4.05	• L = 3.87x10 ³² cm ⁻² s ⁻¹
μ = 4.56	• L = 4.36x10 ³² cm ⁻² s ⁻¹

Absorber instead of HCAL

Rates reduction

(~80% of which is background):

M2R1:	-42%
M2R2:	-69%
M2R3:	-64%

μ -ID efficiency loss negligible.

Evaluated with $K_s^0 \rightarrow \mu^+ \mu^-$ events

	HCAL	Shielding
1μ , all regions	$97.5\pm0.2\%$	$97.7\pm0.2\%$
R1	$93.1\pm0.9\%$	$93.4\pm0.8\%$
R2	$98.2\pm0.3\%$	$98.7\pm0.2\%$
R3	$99.1\pm0.2\%$	$97.4\pm0.3\%$
R4	$96.9\pm0.4\%$	$98.8\pm0.2\%$
2μ , all regions	$94.8\pm0.4\%$	$95.4\pm0.3\%$

ferro-calcestruzzo-ferro (6.2 $\lambda_{\rm I}$), agente su R4 di M2

LHCB-INT-2019-008

solo ferro (10.1 $\lambda_{\rm I}$), agente su R1-R3 di M2

Calcestruzzo (4 $\lambda_{\rm I}$), agente su R4 di M2

Mirrorbor (under study) For termal neutrons absorption

Data usage in the analysis

RUN 2
(2015-2018)

$$6 f b^{-1}$$

I. $D_s^+ \to K^+ K^- \pi^+ + c. c.$

Used for D_s^+ decay identification with a multivariate technique
2. $D_{s1}(2460)^+ \to D_s^+ \mu^+ \mu^- + c. c.$

3. $D_{s1}(2460)^+ \to D_s^+ \mu^+ \mu^+ + c. c.$

4. $D_{s1}(2460)^+ \to D_s^+ \mu^- \mu^- + c. c.$

becay channels with wrong signs used for background studies

CHAMBERS

Table 3.1: Parameters of the present (Run 3) LHCb muon detector. Focusing on the chambers readout system, the logical (L.) and the physical pads (anodic A., and/or cathodic C.) granularity are also indicated. The latter consisting in anodes (A.) and cathodes (C.). The chambers areas are expressed in cm².

		M2	M3	$\mathbf{M4}$	M5
	R1 surface N. chambers	0.9 12	1.0 12	1.2 12	1.4 12
	Ch. area	$30{\times}25$	32.4×27	34.8×29	37.1×30.9
$\mathbf{R1}$	L. granularity	48×8	48×8	12×8	12×8
	Readout	combined	$\operatorname{combined}$	Cathodes	Cathodes
	A. granularity	48×1	48×1	-	-
	C. granularity	8×8	8×8	12×8	12×8
	R1 surface	3.6	4.2	4.8	5.5
	N. chambers	24	24	24	24
	Ch. area	60×25	64.8×27	69.5×29	74.3×30.9
R2	L. granularity	48×4	48×4	12×4	12×4
	Readout	$\operatorname{combined}$	$\operatorname{combined}$	Cathodes	Cathodes
	A. granularity	48×1	48×1	-	-
	C. granularity	8×8	8×8	12×4	12×4
	R1 surface	14.4	16.8	19.3	22.1
	N. chambers	48	48	48	48
	Ch. area	120×25	129.6×27	139×29	148.5×30.9
R3	L. granularity	48×2	48×2	12×2	12×2
	Readout	Cathodes	Cathodes	Cathodes	Cathodes
	A. granularity	-	-	-	-
	C. granularity	48×2	48×2	24×2	24×2
	R1 surface	57.7	67.2	77.4	88.3
	N. chambers	192	192	192	192
	Ch. area	120×25	$129.6{\times}27$	$139{\times}29$	148.5×30.9
$\mathbf{R4}$	L. granularity	24×1	24×1	6×1	6×1
	Readout	Anodes	Anodes	Anodes	Anodes
	A. granularity	24×1	24×1	24×1	24×1
	C. granularity	-	-	-	-

Table 3.2: Cathodes and anodes size, in mm^2 , in the present (Run 3) muon detector where present.

		M2	M3	M4	M5
R1	Anodes Cathodes	$\begin{array}{c} 6.3\times250\\ 38\times31 \end{array}$	$\begin{array}{c} 6.7\times270\\ 41\times34 \end{array}$	-29×36	-31×39
R2	Anodes Cathodes	$\begin{array}{c} 12.5\times250\\ 76\times31 \end{array}$	$\begin{array}{c} 13.5\times270\\ 82\times34 \end{array}$	-58×73	62×77
R3	Anodes Cathodes	25×125	$_{27 \times 135}^{-}$	$_{-}^{-}$ 58 × 145	-62×155
R4	Anodes Cathodes	50×250	54×270	58×290	62×309

Detector performances till now:

- *Geometrical acceptance:* $10 < \theta < 300/250$ mrad (bending/non bending plane)
- *p* measurement resolution:

- $\Delta p/p = 0.5\% / 1.0\%$ at low momentum / at 200 GeV/c
- Impact parameter resolution: $(15 + 29/p_T[GeV]) \mu m$
- *Track reconstruction* resolution: 96% for long tracks
- *Muon identification* efficiency: $\approx 97\%$