Update on α clustering analysis with nuclear emulsions

A. Alexandrov, <u>V. Boccia</u>, A. Di Crescenzo, G. De Lellis, G. Galati, A. Iuliano, A. Lauria, M.C. Montesi, V. Tioukov

> <u>Università di Napoli "Federico II", INFN Napoli</u> Università di Bari "Aldo Moro", INFN Bari

Outline

- Data analysis updates for ${}^{8}Be_{g.s.}$ production cross section measurements with 200 MeV/n oxygen beams
 - Additional cuts on track quality
 - Recap of emulsion charge ID techniques
 - Effects of Charge ID on cross-section measurement and improvement of the efficiency
- Reconstructed MC improvements (on-going!)
 - Fine tuning angular and positional smearing after the simulation
 - Modelling emulsion distorsions and thermal treatments
 - Improving the statistics for a final estimate of the reconstruction efficiency
 - To be discussed with more details in the future Physics Meeting

 According to alpha clustering models, nuclei (in particular, self-conjugated ones) can be thought of as aggregates of transient clusters (α particles)

Introduction

- Cluster structures can be investigated by probing preferential dissociation channels such as ${}^{12}C \rightarrow 3\alpha$, ${}^{16}O \rightarrow 4\alpha$
 - These tend to proceed through intermediate channels like ${}^{12}C \rightarrow {}^{8}Be + \alpha \rightarrow 3 \alpha$
- α clustering has not been thoroughly explored in the energy regime accessed by FOOT
- We are currently analyzing 2019 emulsion data (¹⁶0 @ 200 MeV/n on carbon and polyethylene targets) in order to prove the existence of clusters at intermediate energies
 - The analysis focuses on finding correlated α particles couples that reveal the production of ⁸Be in the fragmentation of the oxygen nucleus
 - No information about the momentum of these particles is being used at this time
- A much more detailed introduction to α clustering can be found in the following presentations:
 - https://agenda.infn.it/event/37748/contributions/217798/attachments/114168/163750/Presentazione%20GM%20Alice.pdf
 - https://agenda.infn.it/event/35352/contributions/201149/attachments/106123/149798/AlphaClustering.pdf
 - https://agenda.infn.it/event/30579/contributions/168437/attachments/91804/124825/Clustering_may2022.pdf

Data Analysis Improvements

- Displays of selected ${}^{8}Be_{g.s.}$ events have shown that in rare instances merging between S1 and S2 tracks could be prone to errors
- An additional cut on the maximum angular difference between the first segment in S1 and the first segment in S2 has been introduced ($\Delta T X_{S2} < 75 \ mrad$ and $\Delta T Y_{S2} < 75 \ mrad$)
 - In GSI2 (polyethylene target), the number of correlated Z=2 couples decreases from 75 to 72
 - After background subtraction, the effect on the ${}^{8}Be_{g.s.}$ signal is negligible

Minor effect \rightarrow less than 4% of «good» MC tracks (tracks with segments belonging to the same event) excluded! 3

Summary of Charge ID with Emulsions

- In the analysis carried out so far, the details of charge identification in DATA have been neglected
- However, @200 MeV/n there is a significant overlap between the Z = 2 and Z = 3 populations and this can lead to a loss of efficiency
- In DATA, charges are identified by a combination of cuts and PCA relying on «volume variables», describing the ionization of the particles in emulsion films undergoing different treatments
- For both targets (carbon and polyethylene) more than 75% of Z=2 are identified via PCA

Cut-Based Analysis

More details in G.Galati et al «Charge identification of fragments produced in ¹⁶O beam interactions at 200 MeV/n and 400 MeV/n on C and C₂H₄ targets»

Z=2 Identification via Principal Component Analysis

- Most of the $Z \ge 2$ tracks are identified by using the VP_{123} distribution, combining the information of all the thermal treatments (R1, R2, R3)
 - Each track is assigned a charge through a probabilistic approach based on the shape of the fitted Gaussians
- While this approach is correct on a «global» level, there is a significant fraction of tracks for which the charge assignment is ambiguous (overlap between Gaussians)

Two main consequences:

1.
$$Z_{true} = 2$$
 misclassified as $Z = 3$ are discarded

2. $Z_{true} = 3$ mislassified as Z = 2 contribute to the final background estimate

No expected correlation peak at small angles between true $Z_{true} = 2$ and $Z_{true} = 3$ \rightarrow consider all tracks that have $p(Z = 2) \ge X\%$

In the following analysis, X = 5 (~ 2σ of the Z=2 Gaussian)

Updated Opening Angle Plots in DATA

- Following the previous observations, distributions of the opening angles between Z=2 pairs have been updated by also including tracks that satisfy $p(Z = 2) \ge 5\%$
- As discussed, both an increase in the signal as well as the background is recorded

Improved Background Modelling

- To assess whether the increase of signal entries is significant, background subtraction is needed •
- To improve the statistics of the background model fit, the opening angles between each track and other 20 random tracks were evaluated (**new**)
- The background model struggles to reproduce data at $\Theta_{\alpha\alpha} > 0.25 \ rad$, especially in the dataset with the ٠ polyethylene target

Effect of New Track Selection on Background Model

• The introduction of Z = 3 tracks to the analysis worsens the fit quality (signal region is still correctly reproduced) Uncorrelated Θ_{qqr} DATA (200 MeV/n ¹⁶O on C_{net}) Uncorrelated Θ_{qqr} DATA (200 MeV/n ¹⁶O on C_{net})

Fit Function: $f(x) = A \cdot xe^{-Bx^2}$

Correlation Peak Comparisons: 200 MeV/n ¹⁶O on C_{nat}

- In order to obtain the final estimate, a fit including both the signal and background model was used ٠
 - The shape of the background contribution («B» parameter) was fixed ٠
- After background subtraction, the correlation peak is more populated \rightarrow efficiency improvement!

 $\Theta_{\alpha\alpha}$, DATA (200 MeV/n ¹⁶O on C_{nat}), p(Z=2) \geq 5%

Correlation Peak Comparisons: 200 MeV/n ^{16}O on C_2H_4

- In order to obtain the final estimate, a fit including both the signal and background model was used
 - The shape of the background contribution («B» parameter) was fixed
- After background subtraction, the correlation peak is more populated \rightarrow efficiency improvement!

Fit Function: $g(x) = N_1 x e^{-Bx^2} + N_2 x e^{-(x-C)^2/D^2}$

Conclusions

- Improved background model and signal fitting
 - Larger statistics for background model fit (20 random uncorrelated pairs)
 - Fit of the correlated distribution with fixed background shape and free normalization
- Alternative Track Selection for clustering measurements → improved efficiency
 - Overlap between Z = 2 and Z = 3 populations in PCA analysis \rightarrow consider all tracks with a minimum probability of being Z
- Work on-going in reconstructed MC to obtain a final estimate of the reconstruction efficiency

Thank You!