EMC Discussion Slides

Frank Porter

December 14, 2011

Issues for TDR

- ► Shipping/refurbishing of barrel
 - Does it need to be disassembled for shipping?
 - Do we need to change preamps (this is baseline)
 - ▶ Do we need to change PIN diodes (this is not baseline)
- ▶ Does backward EMC capture beampipe (this is baseline)?
- What should we include for alternative forward technology?

Crystal properties

Crystal	LY^1	X_0	r_{M}	Rad	d(LY)/dT	$ au_{ m decay}$	$\lambda_{ m max}$
		cm	cm	hard	%/°C	ns	nm
Nal(Tl)	1	2.59	4.13	no	-0.2	230	410
LYSO(Ce)	0.83	1.14	2.07	yes	-0.2	40	402
CsI(TI)	1.65	1.86	3.57	no	0.3	1300	560
Csl	0.036	1.86	3.57	maybe	-1.3	35	420
BGO	0.21	1.12	2.23	maybe ²	-0.9	300	480
$PbWO_4$	0.0029	0.89	2.00	no	-2.7	10	420

(Mostly from RPP)

¹Relative to Nal(TI), small crystals, corrected for QE, room T

²Initial loss of LY, then stable at high doses (10s of Mrad)

Techincal Possibilities – Forward EMC

- 1. Baseline: LYSO with new mechanical support structure
- 2. Alternatives:
 - 2.1 LYSO in BaBar support structure
 - 2.2 Partial BaBar CsI(TI), LYSO in BaBar support structure (Variants: staged upgrade approach; Could be in new structure as "complete" upgrade.)
 - 2.3 BGO in new mechanical support structure
 - 2.4 BGO in BaBar support structure
 - 2.5 Pure Csl in BaBar support structure

	LYSO	LYSO/CsI(TI)	BGO	Pure CsI
New Support	baseline		alternative	
BaBar Support	alternative	alternative	alternative	alternative

(LYSO and BGO in BaBar support would be four crystals per cell.)

Crystal cost summary

Option	Number of		New Crystal	Cost/cc	Crystal Cost
	New Cr	ystals	Volume (cc)	(\$)	(M\$)
Pure CsI		900	680140	7.35	5.00
LYSO full	;	3600	330559	25.00	8.26
3 CsI(TI)/6 L	YSO 2	2160	195590	25.00	4.89
4 CsI(TI)/5 L	YSO :	1760	156412	25.00	3.91
5 CsI(TI)/4 L	YSO :	1360	118672	25.00	2.97
BGO	;	3600	330000	9.00	2.97

[All assume reuse of BaBar supports; no readout costs are included.]

Radiation

Needs to be updated to latest background estimates

- Radiative Bhabha: 3 krad/yr (?)
 - ▶ 1 yr = 2×10^7 s $\Rightarrow 0.6$ rad/hr
 - ► Times 5 implies design for 3 rad/hr
- ▶ Other sources (neutrons, Touschek, beam gas, ...)
 - Comparable contribution(?), implies design for 3 rad/hr
- ► Total dose rate to design to: 6 rad/hr (?)
- Issues
 - Machine physics
 - Variation with time
 - Effect on uniformity

BaBar radiation

Light yield vs time (days)