Distributed Tier1 DISCUIDATED HELT Scenarios 2061191102

G. Donvito --- INFN-BARI

On behalf of the Distributed Storage Group

Outline

- * Why we need a distributed Tier1?
- * Pre-requisite and assumption
- * Few models:
 - * description and features
- * Few guidelines and suggestions
- * Timeline proposal

Why we need a distributed Tier 1?

- * We have a grant from the MIUR in order to build a distributed computing facility for SuperB
- * This will give us the possibility to build on 4 sites a quite big farms strictly devoted to fulfills the SuperB requirements

Starting points

- We will have 3 (+1 smaller) centers in South Italy founded for SuperB
- We are building ~ "from scratch" so we can easily drive the technical solution
- The network among those site should be the most advanced that will be possible given the network technology
 - >10Gbps
- None of those centers already has tape libraries
- We will surely have other sites involved in SuperB computing
 - -distributed world wide
 - -With greater network latency

Open Questions

- T0 site is out of these 4 sites?
 - —R: some of the proposed scenario fit with a T0 within these site, some other not
 - —Could we build a lightweight T0 out of those 3-4 site with only reliable disk buffer and a good 40Gbps network connection?
- T1 should also provide "CAF" (something like an Express Analysis Facility)?
 - —R: All the proposed scenario could address this problem, but it is important to know the answer from the beginning
- The data custodiality is a duty only for T0 or for T1 too?
 - —It is strictly required to do "custodiality" with tapes at T1?
 - —Is there the room to host tape library in each site?
 - —We need to investigate on this item
- Is it foreseen to have other Tier1 in other country?
 - —There will be a "full replication" of the data, or only a fraction of those?

Possible layouts

- 1. Split Data
 - a. Different datasets in different site
- 2. Replicated Data
 - a. Automatically replicated (with available sw)
 - b. Experiments tool driven (HEP community developed sw)
- 3. Split Features
 - a. T0, T1, CAF, etc

Split Data - Description

- *LHC model: already in production
- *The experiment split and associate data to each of the sites
 - *The association could be driven by physics requirements (community interest) or by computing requirements (size of datasets, processing time, etc)
- *All the sites are identical in terms of service
 - *Could be different in terms of size
- *Each site should run all the steps of the experiment workflow

Split Data - Characteristics

- Each site could choose its own hw/sw solution
 - —If the solution is "blessed by the experiment" (i.e.: there are the needed tools to exploit the solution)
- This model is easy to develop: no need to understand how/if it works
 - —LHC is testing it deeply
- If a site is down, a not negligible fraction of the data is unavailable
- Each site should have (if required from computing model) the duty for its own data custodiality
 - —This need a tape system on each site or (something similar)
 - This is costly!
- This will require a good data movement tool to move data from T0 to the T1
 - -I guess we always need this

Split Data - Characteristics (2)

- *The network latency (and bandwidth) among sites it is not a problem
- *The data on each site should be accessed by jobs sent on the same site
 - *Remote access is surely less efficient
- *If we need a "CAF" facility in each Tier1 we need to arrange it somehow
 - *i.e.: Using a dedicated facility (storage, batch configuration, etc)
- *This model perfectly fits the cooperation with other(s) Tier1 in different country

*Split Data

Split Data - Technological option

- *CNAF model:
 - *GPFS + TSM (or Lustre + HPSS)
- *CERN model:
 - *EOS + MSS (staging has to be done somehow "manually")
- *dCache infrastructure
- *Standard "Scalla" installation

Replicated Data - Description

- All the critical data are replicated in each site
 - -We could assure "custodiality" without using tapes?
- Each site should have enough disk space to store all the critical data for the experiment
 - The less critical data, could have less than 3 copies
- All the sites are identical in terms of service
 - —There could be a small difference in terms of size
- Each site could run all the steps of the experiment workflow
 - —The job could be submitted were there are CPU available
 - Job scheduling is not data driven as each site has the data

Replicated Data - Characteristics

- If a site is down (or overloaded), this do not affect at all the experiment community
- We can avoid having "high costly" and "difficult to manage" tape infrastructure
- This scenario will work far better if we can provide a good network bandwidth among sites
- It is important to understand how to keep in sync the 3 sites
 - —There are basically 2 option:
 - "Experiment made" solution
 - Public available solution
- We need to understand how this fits with TCO of the storage solution (power and disks)
- Each site could be "disk only"
 - —In principle there is no need to have a separate solution to implement a "CAF"

Replicated Data (exp made solution) - Characteristics

- *Each site could choose its own hw/sw implementation
- *The replication tool should be:
 - *resilient and well tested
 - *A failure in this system could cause a data loss
 - *Lightweight for the storage system
 - *The storage system could not be overloaded by "routine activities"
 - *Able to automatically deal with disk (and file-system) failure at each site
 - *You need also some cksum features

Replicated Data (exp made solution)

Replicated Data (exp made solution) - Technological option

- *CNAF model:
 - *GPFS + TSM (or Lustre + HPSS)
- *CERN model:
 - *EOS + MSS (staging has to be done somehow "manually")
- *dCache infrastructure
- *Standard "Scalla" installation

Replicated Data (public available solution) - Characteristics

- No need to maintain it
 - -Widely tested and maybe less buggy!
 - —If it is an open source solution we could only adapt to our specific needs
- The solution means having a single instance of the storage system distributed among the sites
 - —A job scheduled in the site "A", could both read data from "A" or from "B" in a transparent way
 - —There is the need to replicate also metadata
 - For failover purposes
- Those solutions are always automatically replicating missing files
 - —A job will never fail for a disk failure

Replicated Data (public available solution) - Characteristics

- It could be realized with a "low-cost" distributed disk-only hw solution
 - -DAS or WN disks
- This solution could fit very well with a CDN: where other smaller site could be simple volatile disk cache
 - —If we have another Tier1, this will easily be "yet another stream" going out from the Tier0
 - -This will put far less load on the experiment DMS
- It is required that all the sites choose the same hw/sw solution

Replicated Pata (public available solution)

Replicated Data (public available solution) - Technological option

```
*Posix FileSystem:
    *GPFS (3 Data & Metadata Replicas)

*Xrootd Based:
    *EOS
```

- *General Solution:
 - *Hadoop FS
- *dCache infrastructure ??
 - *Depends on the availability and reliability of the "ReplicaManager" feature

Split Features - Description

- Each site is specialized to do specific task
 - -T0, T1, CAF etc
- Each site could have all the resource needed to do a specific "task" for the collaboration
- Both T0 and T1 should have a tape archive
 - -CAF could be disk only
- An "experiment made" tool takes care of moving (staging) data among sites
- Each site should run only well defined steps of the experiment workflow
 - —The job submission/match making is "definitely simple"

Split Features - Characteristics

- *Each site is free to choose hw/sw solution
- *If a site goes down at least one step of the chain for all the experiment is blocked
- *Each site has a dedicated infrastructure focused and build to do a specified task
 - *This will mean that is easy to reach a good efficiency
- *The network bandwidth and latency between sites is not a big problem

Split Features - Technological option

```
*T0 / T1:
  *CNAF model:
     *GPFS + TSM (or Lustre + HPSS)
  *CERN model:
     *EOS + CASTOR (staging has to be done somehow "manually")
  *dCache infrastructure
*CAF:
  *Lustre
  *EOS
```

Split Features

List of service

- *Data archival
- *Skimming
- *CAF
- *MC
- *Chaotic analysis?
- *****>>

*Split Data:

- * Standard LHC model each: each T1 responsible for a fraction of data custodiality (a tape library in each site)
- * A site down -> a fraction of data *could* not be available

*Replicated Data:

- * No need to have tape: we have 3 copies of data on cheaper disks in each site
- * If a sites goes down the other can be used => no service disruption
- * At least two different solution here, but we should prefer "public-available solutions"

*Slit features:

- * Each site has a specific "tasks" to execute (Archive, skimming, CAF, etc)
- * Only one site need tape archive
- * If a site goes down a "function" for the experiment is stopped

*The user experience should be transparent to the layout implemented:

* The gateway should take care of distribute jobs thanking care of the computing/ storage infrastructure and the jobs requirements

Timeline proposal

- End 2011 Jan 2012
 - —Find an agreement within the collaboration on the "Open Questions"
- Jan 2012
 - —Find an agreement within the collaboration on a prioritized list of scenario which we are interested
- Feb 2012 start with technologies evaluation
 - -At least two different solution for each scenario
 - —At least first two scenarios
 - —This could be done in parallel in different sites
- April 2012 start with distributed testbed at least with 2 sites
 - -The "most interesting" scenario and solution
- May 2012 third site joining
- June 2012 testing "back-up" solution in the distributed testbed
- July 2012 Report to the collaboration

PON 🔁 approved

Agreement on Scenarios

Testing technical solution

Report on results

Computing TDR

