

- Update on Beam Spread studies
- Energy resolution
- Data MC comparison

Elisa Manoni, Stefano Germani INFN PG

2nd SuperB Collaboration Meeting – LNF EMC session – December 13th, 2011

Update on Beam Spread studies

Beam Spread Evaluation from data

Method presented by Stefano at 11/29 EMC meeting

- $\sigma_{\text{TB}} = \sigma_{\text{EMC}} \oplus \sigma_{\text{BS}}$
- σ (100MeV + 100MeV) = σ (200MeV) and so one for other energies/multiplicity
- O Iterative process to compute σ_{BS} at all energies from data
 - 500 MeV not entering the game, $\sigma_{BS}(500 \text{ MeV}) = 1\%$ as stated by BTF team

Beam Spread Fit result

Energy resolution

Energy resolution - data Beam spread

Energy resolution - no beam spread

Data - MC comparison

Samples and selection

O MC sample:

- Energy dependent Beam spread
- O Light yield non-uniformity taken from Ren-yuan measurements
- X-talk and intrinsic LYSO resolution accounted for
- Electronic noise and signal amplitude as measured from data
- Realistic geometry and dead material
- Photo statistics estimated on data
- 1% intercalibration error

Selection

- O Data: Si and single particle selections
- MC: beam spot size similar to box selected in data, shot single particles

Total Deposited Energy

MC -Data

- Data/MC peak positions at 500 MeV aligned by hand
- About 2% shift in peak position at 100-400 MeV
- Distribution widths now in agreement

Multiplicty

MC Data

S1/S9

-MC -Data

S9/S25

-MC -Data

LAT

MC -Data

$$LAT = \frac{\sum_{i=3}^{N} E_i r_i^2}{\sum_{i=3}^{N} E_i r_i^2 + E_1 r_0^2 + E_2 r_0^2}$$

Moliere Radius in MC

From MC, estimate $R_M = 2.21 \pm 0.02$ cm From Ren-Yuan tables, $R_M^{LYSO} = 2.07$ cm

Conclusion

- O Data-driven method to estimate Beam Spread
- Good agreement between Data and MC resolutions

"Final" Beam Spread subtracted resolutions:

En (MeV)	σ(E)/E (%)
99	5.2 ± 0.4
198	3.3 ± 0.2
297	2.6 ± 0.5
397	2.2 ± 0.4
487	2.1 ± 0.2

O Disagreement in shower shape under study

Extra Slides

BEAM SPREAD EVALUATION TECHNIQUE

Assumption
$$\rightarrow \sigma(100 + 100) = \sigma(200)$$

TB Resolution Components
$$\Rightarrow \frac{\sigma_{TB}^2(100)}{100^2} = \frac{\sigma^2(100)}{100^2} + \frac{BS_{100}^2}{100^2} + \frac{\sigma_{TB}^2(200)}{100^2} + \frac{\sigma_{TB}^2(200)}{200^2} = \frac{\sigma^2(200)}{200^2} + \frac{BS_{200}^2}{200^2}$$

Two Particle Beam Spread Component (Absolute) →

$$BS_{100+100}^2 = BS_{100}^2 + BS_{100}^2 = 2BS_{100}^2$$

Two Particle Beam Spread Component (Relative) \rightarrow

$$\frac{BS_{100+100}^2}{200^2} = \frac{2 \times BS_{100}^2}{200^2} = \frac{1}{2} \frac{BS_{100}^2}{100^2}$$

...

Two Particles TB Resolution Components \rightarrow

$$\frac{\sigma_{TB}^2(100+100)}{200^2} = \frac{\sigma^2(200)}{200^2} + \frac{1}{2} \frac{BS_{100}^2}{100^2}$$

Knowing BS_{200} we can measure $BS_{100} \rightarrow$

$$\frac{\mathbf{BS^2_{100}}}{\mathbf{100^2}} = 2 \times \left(\frac{\sigma_{\mathbf{TB}}^2(\mathbf{100} + \mathbf{100})}{\mathbf{200^2}} - \frac{\sigma_{\mathbf{TB}}^2(\mathbf{200})}{\mathbf{200^2}} + \frac{\mathbf{BS^2_{200}}}{\mathbf{200^2}} \right)$$

Knowing BS_{100} we can measure $BS_{300} \rightarrow$

$$\frac{\mathbf{BS^2_{300}}}{300^2} = \frac{\sigma^2_{\mathbf{TB}}(300)}{300^2} - \frac{\sigma^2_{\mathbf{TB}}(3 \times 100)}{300^2} + \frac{1}{3} \frac{\mathbf{BS^2_{100}}}{100^2}$$

Multi Particles Energies and BS

Emeas Beam	99	198	297	397	487	594	891
99	99x1	99x2	99x3				
198		198x1		198x2		198x3	
297			297x1			297x2	297x3
397				397x1			
487					487x1		

All but the 500 MeV beam can be used to have multiple measurements of the same intrinsic energy resolution.