LET tool for SuperB and SL rings

Simone Liuzzo Thanks to: M. Biagini, P. Raimondi

Outline

- LET tool
- Measurements at Diamond and SLS
- First error tolerances estimated for V16
- Quad alignments at $DA\Phi NE$

S.M.Liuzzo PhD at LNF-INFN [Slide 3]

Comparison between LET and LOCO

Simulations for Diamond

Diamond aerial view

Diamond is a third generation light source open for users since January 2007 100 MeV LINAC; 3 GeV Booster; 3 GeV storage ring

2.7 nm emittance - 300 mA - 18 beamlines in operation (10 in-vacuum small gap IDs)

Correction applied in two iterations using H and V steerers only. No BPM Tilts

Simulations: 50 machine with random misalignments and bpm offsets, corrected using DFS and LET

Comparison between LET and LOCO

S.M.Liuzzo PhD at LNF-INFN [Slide 6]

Measurements at SLS

Measurements aimed to achieve low vertical emittance

Same Tool used for Diamond, modified for direct access to Control System

Vertical beam size measurements performed using vertically polarized Syhnchrotron Light Monitor

S.M.Liuzzo PhD at LNF-INFN [Slide 7]

Measurements at SLS

400 μ m residual vertical orbit.

SLS best $\sigma_y = 4.9 \ \mu m$ is obtianed using skew quadrupoles

Tested also Horizontal correction and Skew quadrupoles correction, but still work is in progress.

S.M.Liuzzo PhD at LNF-INFN [Slide 8]

DAONE Quadrupole Alignments

S.M.Liuzzo PhD at LNF-INFN [Slide 9]

Electron Ring re-Alignment

Horizontal

Vertical

S.M.Liuzzo PhD at LNF-INFN [Slide 10]

BEFORE

AFTER

Positron Ring re-Alignment

Horizontal

Vertical

S.M.Liuzzo PhD at LNF-INFN [Slide 11]

BEFORE

AFTER

HER modified for Tolerances and LET

- Correctors, and monitors at every quadrupole and sextupole including FF → 352 correctors & monitors
- Splitted MAD elements have same misalignment
- Final doublet (from qf1l to qf1r) misaligned as one single element
- Re-iterations : 3 SEXT OFF & 2 SEXT ON

First tolerance tests for HER V16

misalignments	ARCS	FF
QUAD SEXT DX,DY 💠	50 µm	30 µm
QUAD SEXT DPHI 🏾 💦	100 µrad	50 µrad
Monitor resolution	1 µm	1 µm
Monitors OFFSETs	50 µm	50 µm

50 random sets, correcting with LET for 2 iterations after 3 orbit pre-correction iterations

S.M.Liuzzo PhD at LNF-INFN [Slide 13]

First tolerance tests for HER V16

misalignments	ARCS	FF
QUAD SEXT DX,DY 💠	50 µm	30 µm
QUAD SEXT DPHI 🛛 💦	100 µrad	50 μrad
Monitor resolution	1 µm	1 μm
Monitors OFFSETs	50 µm	50 µm
DIPOLE DPHI and DTHETA	50 µrad	50 μrad

50 random sets, correcting with LET for 2 iterations after 3 orbit pre-correction iterations

S.M.Liuzzo PhD at LNF-INFN [Slide 14]

Conclusions

- LET tool under test at DIAMOND and SLS
- Started work also on $\mathsf{DA}\Phi\mathsf{NE}$
- First tolerances for the HER V16 slightly better than those of V12