Physics Summary & Outlook

John Walsh INFN, Pisa

SuperB Collaboration Meeting LNF, December 2011

Outline

- I. Physics meeting
- 2. fastsim production planning
- 3. TDR planning
- 4. Physics tools
- 5. Physics studies
- 6. Future physics meetings

SuperB Physics Meeting

- 2-day meeting held Dec 11-12, i.e. just before this CM
- Very good turnout: ~20 "guests" (16 theorists + 4 experimentalists) and about 15-20 SuperB folks
- Special topic: $B \rightarrow X_s \gamma$ several talks covering theoretical and experimental issues \Rightarrow lively discussion
- Many other topics covered as well: B_s physics, charm, NP from the pheno side, etc.

M. Ciuchini

- We would like to continue this format, if it proves feasible
- See Marco Ciuchini's detailed summary from Tuesday

Conclusion

We think that the workshop was successful:

- · Short and focused
- Lively
- With the right number of people
- Thanks to everybody (particularly the secretariat for assistance on Sunday!)

Upcoming fastsim studies/MC production

- Goal perform physics studies with fastsim, with reasonable generic samples and BG conditions in 2012 → moving towards Physics Book
- Physics Book next big milestone: time scale of Physics
 Book is end of 2013 we want to have the most and best
 possible knowledge of SuperB physics at that point
- Use the next 12-18 months:
 - develop tools necessary for the best fastsim studies we can do
 - get experience with fastsim, production, analysis
 - get new people involved in performing detailed studies with fastsim

Upcoming fastsim studies/MC production

 Compiling a list of analyses that will participate in upcoming fastsim production

Name	Channel(s)	Hadronic tags	SL tags	Notes	WG
Elisa Manoni	K(*)nunu	yes			Rare
Steve Robertson	B->Xs I+I-	yes			Rare
Wenfeng Wang	B->Xs gamma	?	?		Rare
Alejandro Perez			yes	support for SL tags	Rare
Marcello Rotondo, Valentina Santoro	B-> mu nu, e nu	yes			Rare
Guglielmo De Nardo	B-> tau nu	yes			Rare
Alberto Cervelli	tau -> mu gamma				tau
Marcin Chrzaszcz	B -> K phi phi				CPV & mixing

Goal: have analysis ntuples available for Summer 2012

Planning TDR contribution

 Plan a single chapter of 20-30 pages that can be used in both the Detector TDR and the Accelerator TDR

- Material is essentially in hand in the form of the Physics
 White Paper and the SuperB Impact paper
 - mostly an editing job
- Section that specifically addresses physics motivations of accelerator choices

Planning TDR contribution

TDR: Detector

 Emphasis on the detector TDR is best motivated in terms of topic. Suggestion is:

~5 p. Rare decay searches for NP Walsh

~5 p. • CPV and mixing studies Bevan

~4 p. ■ Forbidden decays: e.g. ⊤ LFV Lusiani

Other physics e.g.
 A. N. Other

~1 p. ■ T EDM

~1 p. • q-2 related measurements

~1 p. ■ sin²θ_w

~4 p. • Spectroscopy

~5 p. ■ Interplay discussion – brief review of this. Marco (tbc)

We have the white paper and impact document to refer to.

~1-2 p. • Review in context of accelerator.

Aim for 20-30 pages

LNF April 2011

A. Bevan

TDR: Detector

- Emphasise a thematic approach to help the illustrate the different aspects of the programme by run type:
 - 4S running: 75ab-1
 - 5S running: 1ab-1
 - High energy scan: ~1 week
 precision m_b as input to GUTs
 Lower Y resonance running.

ψ(3770) running

Polarisation

LNF April 2011

- Need to understand a reasonable upper limit on the beam energy.
- For now assuming that 11.2 GeV is the target that will be able to give us a high energy scan early in the programme.

Aim for 20-30 pages

Physics Tools: Matteo Rama

- Joint Physics/computing parallel session on Physics Tools
- Focus on preparations for upcoming fastsim production

G. Inguglia - charm tagging tool Correlated mesons and flavor tagging $K^{(*)}$ - D mesons are produced in a correlated A run at ψ(3772) can be antisymmetric wave function. The made where the mistag Einstein-Podolsky-Rosen paradox probability is effectively zero implies that if at a time ttag one decays then we identify the other as well. D^0 $\Psi(3770)$ $\overline{D^0}$ **PDG 2010** $BR(D^0 \to K^{(*)-}e^+\nu_s) = (2.17 \pm 0.16)3.55 \pm 0.05$ π^+, K^+, ρ^0 $BR(D^0 \to K^{(*)-} \mu^+ \nu_{\mu}) = (1.98 \pm 0.24)3.31 \pm 0.13$ $\Delta z \approx \Delta t \beta \gamma c$ $BR(D^0 \to \pi^+\pi^-) = (1.397 \pm 0.026) \times 10^{-3}$ $BR(D^0 \to K^+K^-) = (3.94 \pm 0.07) \times 10^{-3}$ At time t_{TAG} the decays $D \rightarrow K^{-(+)}l^{+(-)}v_1$ account for 11% of all D decays and unambiguously assigns the flavour: D^0 is associated to a I^+ , $\overline{D^0}$ is associated to a I^- One may consider $D^0 \to K^-X$ (X=anything) to flavor-tag a D^0 meson with a mistag probability ~3% and a total BR~54%

Physics studies

 Beyond the Physics Workshop, several additional physics studies were presented in Phys || sessions this week

Plans for $B \rightarrow K^* VV$ — Elisa Manoni (Perugia)

B_{sig} reconstruction and selection

- Search for the signal signature in the rest of the
 - veto on extra-tracks
 - cut on event-shape and kinematic variables
 - most discriminant variables
 - O Pmiss = Eheam E(reco neutrals and tracks)
 - O E_{extra} = Extra neutral energy in Elettromagnetic Cal (EMC) not associated to B_{sip} / B_{reco}
- Signal yield extraction
 - Cut-and-count analysis
 - Fit to E
 - combine discriminant variables in a Neural Network and fit output distribution
- Systematics
 - largely dominated by MC statistics (i.e. PDF modeling)

elisa manoni - infn pg

$B \rightarrow K^* \nu \nu$: SuperB expected sensitivity

BaBar

- assume SM branching fraction
- 3σ significance @
 - BaBar: 75 ab-1
 - SuperB-boost: 50 ab
 - SuperB+boost+ PID +EMC: 42 ab-1

with ~ 30% precision on B

SuperB boost

B→Kφφ at SuperB — Marcin Chrzaszcz (Krakow)

Why this channel?

You can measure CP and T violation in one go =)

$$B^{\pm} \rightarrow K^{\pm} \phi \phi$$

$$B^{\pm} \rightarrow K^{\pm}\phi\phi$$
 $B^{\pm} \rightarrow \eta_c K^{\pm}$ $\eta_c \rightarrow \phi\phi$

$$b \rightarrow s\bar{s}s$$
 penguin

$$b \rightarrow c\bar{c}s$$
 transition

Both channels look similar in the detector: 5 charged kaons.

Direct measurements of CP violation:

$$A_{cp} = \frac{N(B^{-}) - N(B^{+})}{N(B^{-}) + N(B^{+})}$$
 arg $\left(\frac{V_{tb}V_{ts}^{*}}{V_{cb}V_{cs}^{*}}\right) \approx 0$

2011-12-14

Background

Other possible candidates for background are:

$$B^{\pm'} \rightarrow \phi K^{\pm} K^{-} K^{+}$$

$$B^{\pm} \rightarrow K^{\pm}K^{-}K^{+}K^{-}K^{+}$$

$$B^{\pm} \rightarrow f_0 K \phi$$

$$B^{\pm} \rightarrow f_0 K \phi$$

 $B^{\pm} \rightarrow f_0 K^{\pm} K^- K^+$

Tau studies — Alberto Cervelli (Pisa)

Low-multiplicity triggers and NP - Yury

Kolomensky (UC Berkeley)

- Physics of low-mass Higgs and Dark Forces
- Review of Babar triggers to capture this physics
- Outlook for SuperB

Low-Multiplicity Triggers

- Three event topologies deployed @ BABAR
 - □ Single-photon (trigger+filter)
 - 1 high-energy cluster + "nothing else"
 - □ Single-photon+2 tracks (BGFilter)
 - Mainly for dark photon searches
 - Requires a radiative bhabha veto (cut on two-track mass m<5 GeV if one of the tracks is an electron)
 - □ Low-mass dipion (trigger+filter)
 - Two low-momentum pions, consistent with transition $\Upsilon(nS) \rightarrow \pi\pi\Upsilon(mS)$

Charm mixing at threshold — Nicola Neri (Milano)

Goal

- Estimate and compare the experimental sensitivity on charm mixing and CP violating parameters at SuperB:
 - > Y(4S)
 - $\triangleright \Psi(3770)$ as a function of CM boost and detector configuration
- First step: study the 2-body decays
 preliminary results presented today
- Second step: include the 3-body decays

Sensitivity studies: expected num. of events

LD \T(/2770\

		LB $\Psi(37/0)$	IB Ψ (3//0)	HB $\Psi(37/0)$
Selected	$\Upsilon(4S)$	$\Psi(3770)$	$\Psi(3770)$	$\Psi(3770)$
decays	$75 {\rm ab}^{-1}$	$0.5\mathrm{ab}^{-1},\beta\gamma=0.238$	$0.5 \mathrm{ab^{-1}}, \beta \gamma = 0.56$	$0.5 \mathrm{ab^{-1}}, \beta \gamma = 0.91$
$l^{\pm}X^{\mp}, CP+$	19600000	569395	525890	418331
$l^{\pm}X^{\mp}, CP-$	30900000	685053	612430	491599
$l^{\pm}X^{\mp}, K^{\pm}\pi^{\mp}$	222900000	4181494	3862011	3072118
	(790000)	(13798)	(12744)	(10137)
$l^{\pm}X^{\mp}, K_S^0\pi^+\pi^-$	86600000	828850	689557	498370
$l^{\pm}X^{\mp}, l^{\mp}X^{\pm}$	85300000	1067615	986045	784370
	(50)	(51)	(47)	(38)
$K^{\mp}\pi^{\pm}, K^{\pm}\pi^{\mp}$	N/A	1067615	986045	784370
	(N/A)	(51)	(47)	(38)
$CP+, K^{\mp}\pi^{\pm}$	N/A	309608	285953	227467
$CP-, K^{\mp}\pi^{\pm}$	N/A	291814	260879	209408
CP+, CP-	N/A	92526	82717	66397
$CP+, K_S^0\pi^+\pi^-$	N/A	113691	91553	66770
$CP-, K_S^0\pi^+\pi^-$	N/A	115525	93030	67847
$K_S^0 \pi^+ \pi^-, K_S^0 \pi^+ \pi^-$	N/A	290342	217578	142875

SuperB@LNF, Dec 2011

John Walsh, INFN Pisa

Status of EW physics — Mike Roney (UVic)

$$e^+e^- \to \mu^+\mu^-$$
 @ $\sqrt{s}=10.58GeV$

Diagrams	Cross Section (nb)	$\mathbf{A}_{\mathbf{FB}}$	$\underset{(Pol = 100\%)}{A_{LR}}$
$ Z+\gamma ^2$	1.01	0.0028	-0.00051

$$\sigma_{ALR} = 6x10^{-6} \rightarrow \sigma_{(sin20eff)} = 0.0002$$

cf SLC A_{LR} $\sigma_{(sin20eff)}$ =0.00026 relative stat. error of 1% (pol=80%) require <~0.5% systematic error on beam polarisation

SM input

Relative vector/couplings

take ratios of μ,τ,c,b A_{LR} so that of the electron cancels polarisation systematic errors and the electron axial-vector coupling: stat. error dominated

	SM	LEP	SuperB
	(Mh=125GeV)		error
g_V^μ/g_V^τ	1	0.997 +/- 0.068	~2% from tau stats
g_V^c / g_V^{lepton}	5.223 +/-	-4.991 +/- 0.074	~1% muon stats +/-0.05
g_V^b / g_V^{lepton}	9.357 +/-	8.58+/- 0.16	~1% from mu stats +/- 0.08

Planning: future meetings

- We aim to continue with 2-day Physics Meetings that take place in conjunction (before or after) SuperB Collab. Mtg.
- Plan to have two such meetings in 2012, the <u>tentative plan</u> is attach them to the CM in
 - Elba, end of May, 2012
 - Frascati, December 2012
- For the Elba meeting, there are additional constraints
 - only I day
 - limited number of hotel rooms

still need to think about this

Also expect plenty of activity during CMs

New Physics Convener

- Dave Brown has made many contributions to SuperB, including serving as Physics Convener, but he has moved on to other things
- Jim Olsen of Princeton University has agreed to become the 4th Physics Convener of SuperB, joining Adrian, Marco and myself
- He will work closely with the Phenomenology Working Group

Many thanks to Dave and Welcome to Jim

Conclusion

- There is good participation in physics activities, both within SuperB and in the theory community
- TDR plan in place
- We are planning a centralized fastsim MC production for Spring 2012
- Physics Tools group is very active, many opportunities to contribute → contact Matteo
- More generally, to participate in Physics activities, contact Adrian, Marco, Jim or myself
- Thanks