

Wishing to reuse part of the code written by the
BaBar collaboration, there are two main questions
that require an answer:

 Is it possible to run in parallel BaBar code (legacy
code)? If this is the case, what kind of
performances can be expected?

 What type of parallelization can be done on this
code with the minimum impact?

Trying to run EvtGen in parallel provided some
usefull information

2/15 S. Longo – 2nd SuperB Collaboration Meeting – LNF

EvtGen is: «…an event generator designed for the
simulation of the physics of B decays.»
(http://www.slac.stanford.edu/~lange/EvtGen)

Some characteristics:

 Can run in «standalone» mode (without the BaBar
Framework)

 It’s written in C++ and interfaced with Fortrans
event generators

 It depends on legacy code written in Fortran
(Pythia, Photos) and C++ (CERNLib, CLHEP)

S. Longo – 2nd SuperB Collaboration Meeting – LNF 3/15

http://www.slac.stanford.edu/~lange/EvtGen
http://www.slac.stanford.edu/~lange/EvtGen

[…]

EvtRandomEngine* MyRandomEngine;

MyRandomEngine = new EvtCLHEPRandomEngine();

double xyzt = 0.0;

HepLorentzVector t_init(xyzt,xyzt,xyzt,xyzt);

EvtGen* myGenerator = new EvtGen("DECAY.DEC","evt.pdl",MyRandomEngine);

EvtVector4R p_init(EvtPDL::getMass(EvtPDL::getId("Upsilon(4S)")),0.0,0.0,0.0);

Event = EvtParticleFactory::particleFactory(EvtPDL::getId("Upsilon(4S)"), p_init);

Event->setVectorSpinDensity();

TheGenerator->generateEvent(Event, t_init);

[…]

S. Longo – 2nd SuperB Collaboration Meeting – LNF

Initialize Random
number generator

Set initial conditions

Generate one Event

4/15

Parallelization of a for cycle is done defining a BodyObject as follow:

Class BodyObject

{

 private:

 <Thread Pool Private Data>

 public:

 BodyObject(…);

 void operator()(const blocked_range<size_t>&Range) const

 {

 <Thread Private Data>

 for (size_t i = Range.begin(); i != Range.end(); ++i)

 {

 <Something to be executed in parallel>

 }

 }

};

S. Longo – 2nd SuperB Collaboration Meeting – LNF 5/15

A first try was done parallelizing the decay phase of the generation
process as follow:

 The body object is initialized with the initial conditions (x,y,z,t) and
the Generator to employ

 A vector of events is generated by the functor

void operator()(const blocked_range<unsigned long>& Range) const {

 for (unsigned long i = Range.begin(); i < Range.end(); ++i)

 {

 EvtVector4R p_init(EvtPDL::getMass(EvtPDL::getId("Upsilon(4S)")),
 0.0,0.0,0.0);

 (*EventVector)[i] = EvtParticleFactory::particleFactory(
 EvtPDL::getId("Upsilon(4S)"), p_init);

 (*EventVector)[i]->setVectorSpinDensity();

 EventGenerator->generateEvent((*EventVector)[i], *t_init);

 }

}

S. Longo – 2nd SuperB Collaboration Meeting – LNF 6/15

A single generator per thread pool is a bottleneck

EvtGen itself must be «parallelized» in some way but:

 There is a large use of static classes and properties

 Data produced in the Fortran part of the code is passed
through «Common blocks» (memory shared by code of the
same program unit)

A Body Object with a local Event Generator cannot work!

A different parallelization pattern has to be used.

S. Longo – 2nd SuperB Collaboration Meeting – LNF 7/15

Profiling a serial execution of the code to produce some
thousands of events, we get:

More than 2 3 of the time is spent doing math (Integrating Fermi
and Delta Functions)

S. Longo – 2nd SuperB Collaboration Meeting – LNF

 % cumulative self calls self total
24.75 4.02 4.02 91182679 0.00 0.00
 EvtBtoXsgammaFermiUtil::FermiExpFunc(…)
12.52 6.05 2.03 67624537 0.00 0.00
 EvtBtoXsgammaKagan::DeltaFermiFunc(…)
 10.85 7.81 1.76 1217901394 0.00 0.00
 std::vector<double, std::allocator<double> >::operator[](…) const
 7.24 8.98 1.18 67624537 0.00 0.00
 EvtBtoXsgammaKagan::Delta(…)
 6.04 9.96 0.98 91182550 0.00 0.00
 EvtBtoXsgammaKagan::FermiFunc(…)
 5.24 10.81 0.85 88725714 0.00 0.00
 EvtItgThreeCoeffFcn::myFunction(…) const
[…]

8/15

 Profiling gave us that Hadronic Mass Spectra computation is
the most time consuming procedure

 There’s room for a performance increase if we parallelize
function integration

How to parallelize legacy code?

 TBB allows fine grained management of threads and tasks,
but requires a complete rewrite of the code to become «TBB
compliant»

 OpenMP give less freedom to the programmer but can be
easily injected inside existent code

S. Longo – 2nd SuperB Collaboration Meeting – LNF 9/15

EvtBtoXsgammaKagan::computeHadronicMass is the EvtGen
procedure that calculate Hadronic Mass Spectra

It contains a quite long setup followed by a for cycle where the
Branching Fraction is calculated: this is the section that have to
be parallelized.

How to proceed with OpenMP parallelization?

 Identifying objects dependencies

 Creating separated objects local to each thread

 Reducing the result of the loop

S. Longo – 2nd SuperB Collaboration Meeting – LNF 10/15

S. Longo – 2nd SuperB Collaboration Meeting – LNF

Comparison between serial execution and the OpenMP implementation

Measurements were
done on a single Intel
Xeon E5630 system (4
cores, 2 HT per core),
with 12GB of RAM

The parallelization
pattern increases legacy
code performances

Note:
Plotted measures are
correlated!

11/15

S. Longo – 2nd SuperB Collaboration Meeting – LNF

Comparison between serial execution and the OpenMP implementation

Moving beyond the
setup used to profile the
application, the
SpeedUp quickly falls
down.

Other parts of the code
become dominant in
CPU usage

Note:
Plotted measures are
correlated!

12/15

S. Longo – 2nd SuperB Collaboration Meeting – LNF

EvtGen parallelization provided some usefull
information:

 Legacy Fortran code can be executed in a parallel
environment like OpenMP or TBB

 TBB cannot be profitably used in modules like
EvtGen (static classes/properties) if we don’t want
to rewrite major part of code

 OpenMP can be employed to paralelize sections of
legacy code, with minor modification

 OpenMP solution can provide a quite good
performance gain

13/15

S. Longo – 2nd SuperB Collaboration Meeting – LNF

EvtGen example also suggest a pattern that can be
adopted to parallelize legacy modules:

 Identify a set of tipical use cases

 Profile the module on those cases

 Identify the most time consuming part of the code

 Parallelize it via OpenMP

Unfortunately, this add a new line of work to the
Framework R&D activities.

14/15

