7°\
Superb

Parallelization and

Legacy code:
a preliminary work on EvtGen

N\

Scenario SuperB
—/

Wishing to reuse part of the code written by the
BaBar collaboration, there are two main questions
that require an answer:

» Is it possible to run in parallel BaBar code (legacy
code)? If this is the case, what kind of
performances can be expected?

» What type of parallelization can be done on this
code with the minimum impact?

Trying to run EvtGen in parallel provided some
usefull information

S. Longo - 2nd SuperB Collaboration Meeting - LNF

7N\
EvtGen SuperB
—/

EvtGen is: «...an event generator designed for the
simulation of the physics of B decays.»

()

Some characteristics:

» Can run in «standalone» mode (without the BaBar
Framework)

» It’s written in C++ and interfaced with Fortrans
event generators

» It depends on legacy code written in Fortran
(Pythia, Photos) and C++ (CERNLib, CLHEP)

\\\\\\\

S. Longo - 2nd SuperB Collaboration Meeting - LNF

http://www.slac.stanford.edu/~lange/EvtGen
http://www.slac.stanford.edu/~lange/EvtGen

. . '\
Simple Event Generation SuperB
) -

Initialize Random
EvtRandomEngine* MyRandomEngine; » number genel’atOl’

MyRandomEngine = new EvtCLHEPRandomEngine();

double xyzt = 0.0;

Set initial conditions

HepLorentzVector t_init(xyzt,xyzt,xyzt,xyzt);
EvtGen* myGenerator = new EvtGen(”DECAY.DEC”,”evt.pdl”,MyRandomEngine);
EvtVector4R p_init (EvtPDL: :getMass(EvtPDL: :getId(”Upsilon(45)”)),0.0,0.0,0.0);

Event = EvtParticleFactory::particleFactory(EvtPDL::getId(”Upsilon(4S)”), p_init);

Event->setVectorSpinDensity();

TheGenerator->generateEvent (Event, t_init); ‘.

[...]

Generate one Event

S. Longo - 2nd SuperB Collaboration Meeting - LNF

N\

The TBB Approach Supor

W,

Parallelization of a for cycle is done defining a BodyObject as follow:

Class BodyObject
{

private:

<Thread Pool Private Data>
public:

BodyObject (..);

void operator () (const blocked_range<size_t>&Range) const

{
<Thread Private Data>
for (size_t i = Range.begin(); 1 !'= Range.end(); ++1)
{

<Something to be executed in parallel>

S. Longo - 2nd SuperB Collaboration Meeting - LNF

. 7N\
Parallel decay - Single Generator slm_arlﬂ

A first try was done parallelizing the decay phase of the generation
process as follow:

» The body object is initialized with the initial conditions (x,y,z,t) and
the Generator to employ

» A vector of events is generated by the functor

void operator() (const blocked_range<unsigned long>& Range) const {

for (unsigned long i1 = Range.begin(); 1 < Range.end(); ++1)

{

EvtVector4R p_init (EvtPDL: :getMass(EvtPDL: :getId(”Upsilon(4S)”)),
0.0,0.0,0.0);

(*EventVector)[i] = EvtParticleFactory::particleFactory(
EvtPDL: :getId(”Upsilon(4S)”), p_init);

(*EventVector)[i]->setVectorSpinDensity();

EventGenerator->generateEvent ((*EventVector)[i], *t_init);

S. Longo - 2nd SuperB Collaboration Meeting - LNF

. 7N\
First Try — Results SuperB

A single generator per thread pool is a bottleneck

EvtGen itself must be «parallelized» in some way but:
» There is a large use of static classes and properties

» Data produced in the Fortran part of the code is passed
through «Common blocks» (memory shared by code of the
same program unit)

A Body Object with a local Event Generator cannot work!

A different parallelization pattern has to be used.

S. Longo - 2nd SuperB Collaboration Meeting - LNF

Profiling [1/2] SllllErB

Profiling a serial execution of the code to produce some
thousands of events, we get:

% cumulative self calls self total
24.75 4.02 4.02 91182679 0.00 0.00
EvtBtoXsgammaFermiUtil: : FermiExpFunc(..)
12.52 6.05 2.03 67624537 0.00 0.00
EvtBtoXsgammaKagan: : DeltaFermiFunc(...)
10.85 7.81 1.76 1217901394 0.00 0.00
std: :vector<double, std::allocator<double> >::operator[](..) const
7.24 8.98 1.18 67624537 0.00 0.00
EvtBtoXsgammaKagan: : Deltal(...)
6.04 9.96 0.98 91182550 0.00 0.00
EvtBtoXsgammaKagan: : FermiFunc(...)
5.24 10.81 0.85 88725714 0.00 0.00

EvtItgThreeCoeffFcn: :myFunction(..) const
[...]

More than 2/; of the time is spent doing math (Integrating Fermi
and Delta Functions)

S. Longo - 2nd SuperB Collaboration Meeting - LNF

Profiling [2/2] @l

» Profiling gave us that Hadronic Mass Spectra computation is
the most time consuming procedure

» There’s room for a performance increase if we parallelize
function integration

How to parallelize legacy code?

» TBB allows fine grained management of threads and tasks,
but requires a complete rewrite of the code to become «TBB
compliant»

» OpenMP give less freedom to the programmer but can be
easily injected inside existent code

S. Longo - 2nd SuperB Collaboration Meeting - LNF

. . 7N\
Implementation with OpenMP S{IEI‘,B

EvtBtoXsgammaKagan::computeHadronicMass is the EvtGen
procedure that calculate Hadronic Mass Spectra

It contains a quite long setup followed by a for cycle where the
Branching Fraction is calculated: this is the section that have to
be parallelized.

How to proceed with OpenMP parallelization?

» Identifying objects dependencies

» Creating separated objects local to each thread
» Reducing the result of the loop

S. Longo - 2nd SuperB Collaboration Meeting - LNF

N\

Performances [1/2] SuperB

Nt

Comparison between serial execution and the OpenMP implementation

Measurements were
done on a single Intel
Xeon E5630 system (4
cores, 2 HT per core),
with 12GB of RAM

The parallelization
pattern increases legacy
code performances

Note:
Plotted measures are
correlated!

Parallelization SpeedUp

G/ﬁre/il‘h; 4,65
. / 3,09 2330' a ry

320 1280 5120 10240

Number of Events

S. Longo - 2nd SuperB Collaboration Meeting - LNF

@
Performances [2/2] sfllnaﬁl
./

Comparison between serial execution and the OpenMP implementation

Moving beyond the . .

setup used to profile the Parallg!lzatlon Speedup
application, the s o

SpeedUp quickly falls

down. 4

Other parts of the code | 3, |/ 1% 00 101

become dominant in 0 : : 057

CPU usage al ' ' '7
0 1 . r . .

Note- 5120 10240 20480 40960 81920

Plotted measures are Number of Events

correlated!

S. Longo - 2nd SuperB Collaboration Meeting - LNF

Conclusions [1/2] sfllnaﬁl

EvtGen parallelization provided some usefull
information:

» Legacy Fortran code can be executed in a parallel
environment like OpenMP or TBB

» TBB cannot be profitably used in modules like
EvtGen (static classes/properties) if we don’t want
to rewrite major part of code

» OpenMP can be employed to paralelize sections of
legacy code, with minor modification

» OpenMP solution can provide a quite good
performance gain

S. Longo - 2nd SuperB Collaboration Meeting - LNF

7°\
Conclusions [2/2] SuperB
./

EvtGen example also suggest a pattern that can be
adopted to parallelize legacy modules:

Identify a set of tipical use cases

Profile the module on those cases

Identify the most time consuming part of the code
Parallelize it via OpenMP

v

v

v

v

Unfortunately, this add a new line of work to the
Framework R&D activities.

S. Longo - 2nd SuperB Collaboration Meeting - LNF

7°\
Superb

Thanks
For your attention!

