
Introduction Pills of Tbb

Introducing Intel Tbb

Marco Corvo

CNRS and INFN

II SuperB Collaboration Meeting

Frascati December 13-16, 2011

Introduction Pills of Tbb

What is Intel Tbb

1 Intel Threading Building Blocks is a runtime-based parallel
programming model for C++ code that uses threads

2 It consists of a template-based runtime library to help you
harness the latent performance of multicore processors

3 Tbb allows the user to write scalable applications that

Specify logical parallel structure instead of threads

Emphasize data parallel programming

Take advantage of concurrent collections and parallel

algorithms

Introduction Pills of Tbb

Where to find Tbb

Tbb is available at http://threadingbuildingblocks.org

it's available also as a commercial version

Besides the documentation, there's a useful blog where
developers can discuss with Intel gurus
http://software.intel.com/en-us/blogs/category/intel-
threading-building-blocks/

http://threadingbuildingblocks.org
http://software.intel.com/en-us/blogs/category/intel-threading-building-blocks/
http://software.intel.com/en-us/blogs/category/intel-threading-building-blocks/

Introduction Pills of Tbb

Disclaimer

I think that one of the main source of confusion about
parallelization rises from a

Parallelize a given program or software requires much more
than simply add some pragma statement to the source code

pragmas are useful to unroll for loops, but when it comes to
real parallelization and concurrency you must redesign your
code

Introduction Pills of Tbb

A simple example: Tbb parallel_for

Suppose we want to apply a given function to each element of an

array

void SerialApplyFoo(float a[], size_t n) {

for(size_t i=0; i!=n; ++i) Foo(a[i]);

}

The first step in parallelizing this loop is to convert the loop body

into a form that operates as required by parallel_for

class ApplyFoo {

float *const my_a;

public:

void operator ()(const blocked_range <size_t >& r)

const {

float *a = my_a;

for(size_t i=r.begin(); i!=r.end(); ++i)

Foo(a[i]);

}

ApplyFoo(float a[]): my_a(a){}

};

Introduction Pills of Tbb

A simple example: Tbb parallel_for II

Now to execute the for loop in parallel

void ParallelApplyFoo(float a[], size_t n) {

parallel_for(blocked_range <size_t >(0,n), ApplyFoo

(a));

}

As you can see the structure becomes trickier than one could
expect

And this is the simplest thing you can do with Tbb

Introduction Pills of Tbb

Concurrency

Tbb provides highly concurrent container classes

A concurrent container allows multiple threads to concurrently
access and update items in the container

Typical STL libraries don’t allow concurrency, unless you wrap

them with a mutex, though reducing parallel speedup

Example containers: concurrent_vector,
concurrent_hash_map, concurrent_queue

Introduction Pills of Tbb

Tbb Tasks

Tasks are more specialized objects than parallel_loop

If you design your software slicing the computation in
elementary operations (tasks), Tbb task scheduler can decide
the task size, number of threads to use and their schedule

Simple example: a Fibonacci series

long SerialFibo(long j) {

if (j<2) {

return j;

} else {

return SerialFibo(j-2) + SerialFibo(j-1);

}

}

Introduction Pills of Tbb

Tbb Tasks II

In terms of Tbb tasks, the function is much di�erent. First of all
it's no more a function, but a class

class FibTask: public tbb::task {

public:

const long n;

long* const sum;

FibTask(long _n, long* _s): n(_n),sum(_s){}

task* execute () {

if (n < CutOff) {

*sum = SerialFibo(n);

} else {

long x, y;

FibTask& a = *new(task:: allocate_child ())

FibTask(n - 1, &x);

FibTask& b = *new(task:: allocate_child ())

FibTask(n - 2, &y);

set_ref_count (3);

spawn(b);

spawn_and_wait_for_all(a);

*sum = x + y;

}

return NULL;

}

};

Introduction Pills of Tbb

Tbb Tasks II

To call the Fibonacci 'function'

long ParallelFib(long j) {

long sum;

tbb:: tick_count mainStartTime = tbb:: tick_count ::now();

FibTask& a = *new(tbb::task:: allocate_root ()) FibTask(j

, &sum);

tbb::task:: spawn_root_and_wait(a);

tbb:: tick_count mainStopTime = tbb:: tick_count ::now();

double etime = (mainStopTime - mainStartTime).seconds ()

;

cout << ’Parallel Elapsed time: ’ << etime << endl;

return sum;

}

Watch out!

As already said, a simple recursive function can take a much more
complex shape when designed for parallelization.

Introduction Pills of Tbb

The flow_graph environment I

What caught our attention
on Tbb was the flow_graph

environment which is
available since the last
version of Tbb (4.0)

flow_graph provides �exible
and convenient API for
expressing static and
dynamic dependencies
between computations

In our case we’d like to

express dependencies

among modules that, in

the current framework,

are executed sequencially

Introduction Pills of Tbb

The flow_graph environment II

flow_graph o�ers many di�erent kind of nodes:

functional, that is they perform a user-provided computation

buffer, that is they keep a set of messages which are

dispatched in an arbitrary order

queue, that is they dispatch messages to other nodes in a FIFO

order

join, which collect messages from other nodes

A couple of exercises as proof-of-concept has been done:
1 How we can exploit Tbb in our quest for parallelism in the

framework
2 A quantitative measure of the potential speedup when

parallelizing an event generator

Introduction Pills of Tbb

Conclusions

Tbb looks promising, but other options are available

the point is that at some point we should �nd our way
home. . .

These months have been useful to dig into the old baBar
framework and exercise with Tbb

But again we have to put some sticks around and start with
the real work

	Introduction
	What is Tbb

	Pills of Tbb
	Examples
	Smart Tbb features
	Smart Tbb features: tasks
	Smart Tbb features: graphs

