Introducing Intel Tbb

Marco Corvo

CNRS and INFN

Il SuperB Collaboration Meeting

Frascati December 13-16, 2011

Introduction
®00

What is Intel Tbb

© Intel Threading Building Blocks is a runtime-based parallel
programming model for C++ code that uses threads

@ It consists of a template-based runtime library to help you
harness the latent performance of multicore processors
© Tbb allows the user to write scalable applications that
o Specify logical parallel structure instead of threads
o Emphasize data parallel programming
o Take advantage of concurrent collections and parallel
algorithms

Introduction
oceo

Where to find Tbb

@ Tbb is available at http://threadingbuildingblocks.org

@ it's available also as a commercial version

@ Besides the documentation, there's a useful blog where
developers can discuss with Intel gurus

http://software.intel.com/en-us/blogs/category /intel-
threading-building-blocks/

http://threadingbuildingblocks.org
http://software.intel.com/en-us/blogs/category/intel-threading-building-blocks/
http://software.intel.com/en-us/blogs/category/intel-threading-building-blocks/

Introduction
ooe

Disclaimer

o | think that one of the main source of confusion about
parallelization rises from a

o Parallelize a given program or software requires much more
than simply add some pragma statement to the source code
e pragmas are useful to unroll for loops, but when it comes to

real parallelization and concurrency you must redesign your
code

Pills of Tbb
®0

A simple example: Tbb parallel for

@ Suppose we want to apply a given function to each element of an
array

void SerialApplyFoo(float al[l, size_t n) {
for(size_t i=0; il'=n; ++i) Foo(al[il);

}

@ The first step in parallelizing this loop is to convert the loop body
into a form that operates as required by parallel_for

class ApplyFoo {

float *const my_a;

public:

void operator()(const blocked_range<size_t>&k r)
const o

float *a = my_a;

for(size_t i=r.begin(); il!=r.end(); ++i)
Foo(alil);

¥

ApplyFoo(float all): my_a(a){}

3

Pills of Tbb
oce

A simple example: Tbb parallel for I

@ Now to execute the for loop in parallel

void ParallelApplyFoo(float all, size_t n) {
parallel_for(blocked_range<size_t>(0,n), ApplyFoo
(a));

@ As you can see the structure becomes trickier than one could
expect
@ And this is the simplest thing you can do with Tbb

Pills of Tbb
.

Concurrency

@ Tbb provides highly concurrent container classes

@ A concurrent container allows multiple threads to concurrently
access and update items in the container

o Typical STL libraries don't allow concurrency, unless you wrap
them with a mutex, though reducing parallel speedup
e Example containers: concurrent_ vector,
concurrent__hash _map, concurrent_queue

Pills of Tbb
[Jole]

I ERS

o Tasks are more specialized objects than parallel_loop

o If you design your software slicing the computation in
elementary operations (tasks), Tbb task scheduler can decide
the task size, number of threads to use and their schedule

@ Simple example: a Fibonacci series

long SerialFibo(long j) {

if (j<2) {
return j;
} else {

return SerialFibo(j-2) + SerialFibo(j-1);
}
¥

Pills of Tbb
oeo

Tbb Tasks Il

In terms of Tbb tasks, the function is much different. First of all
it's no more a function, but a class

class FibTask: public tbb::task {
public:
const long n;
long* const sum;
FibTask(long _n, long* _s): n(_n),sum(_s){}
task* execute () {
if (n < Cut0ff) {

*sum = SerialFibo(n);
} else {
long x, y;

FibTask& a = *new(task::allocate_child())
FibTask(n - 1, &x);

FibTask& b = *new(task::allocate_child())
FibTask(n - 2, &y);

set_ref_count (3);

spawn (b) ;
spawn_and_wait_for_all(a);
xsum = X + y;

}
return NULL;

Pills of Tbb
ooe

Tbb Tasks Il

To call the Fibonacci 'function’

long ParallelFib(long j) {
long sum;

tbb::tick_count mainStartTime = tbb::tick_count::now();
FibTask& a = #*new(tbb::task::allocate_root()) FibTask(]
, &sum);

tbb::task::spawn_root_and_wait(a);

tbb::tick_count mainStopTime = tbb::tick_count::now();

double etime = (mainStopTime - mainStartTime).seconds()
H

cout << << etime << endl;

return sum;

As already said, a simple recursive function can take a much more
complex shape when designed for parallelization.

Pills of Tbb
®00

The flow _graph environment |

Graph object @ What caught our attention
fL on Tbb was the flow_graph

environment which is
available since the last
version of Tbb (4.0)

e flow_graph provides flexible
and convenient API for
expressing static and
dynamic dependencies
between computations

o In our case we'd like to
express dependencies
among modules that, in
the current framework,
are executed sequencially

Graph node

—0—
O

Edge

| -@-
’
O

Pills of Tbb
oceo

The flow _graph environment ||

o flow graph offers many different kind of nodes:
o functional, that is they perform a user-provided computation
o buffer, that is they keep a set of messages which are
dispatched in an arbitrary order
e queue, that is they dispatch messages to other nodes in a FIFO
order
e join, which collect messages from other nodes

@ A couple of exercises as proof-of-concept has been done:

© How we can exploit Tbb in our quest for parallelism in the
framework

@ A quantitative measure of the potential speedup when
parallelizing an event generator

Pills of Tbb
ooe

Conclusions

@ Tbb looks promising, but other options are available

@ the point is that at some point we should find our way
home. ..

@ These months have been useful to dig into the old baBar
framework and exercise with Thb

@ But again we have to put some sticks around and start with
the real work

	Introduction
	What is Tbb

	Pills of Tbb
	Examples
	Smart Tbb features
	Smart Tbb features: tasks
	Smart Tbb features: graphs

