2nd SuperB Collaboration Meeting MDI parallel session: Dec. 14th 2011

Absorbed doses on super-conducting magnets

Alejandro Pérez INFN – Sezione di Pisa

Outline

- New final focus (FF) model
 - Geometry: Super-conducting magnets and Cryostat
 - Magnetic model: detector solenoidal field inside FF
- November 2011 full-simulation production
 - Requested samples and production summary
- Absorbed doses on the super-conducting magnets
 - The method
 - Results
- Summary

New FF model: Cryostat and Magnets (I)

Filippo Bosi Drawings

- All magnetic elements are made of the same material (QD0_mixture):
 - Density: 7.57 gr/cm³
 - Composition: Niobium (0.106), Titanium (0.119), Cooper (0.347) and Iron (0.428)

New FF model: Cryostat and Magnets (II)

BRN implementation

New FF model: Cryostat and Magnets (III)

New FF model: Magnetic model (I)

- Previously:
 - detector solenoidal field turned off in final focus magnetic model
- This field is important for an accurate model of two-photon (pairs) backgrounds on SVT. Less important for Rad-Bhaha and Touschek
- Implementation:
 - Magnitude: 1.5 Tesla
 - Direction: Z>0 (0.0,0.0,1.0)
 - Volume: field different from zero only inside a cylinder of length 40cm and radius 40cm.

New FF model: Magnetic model (II)

New FF model: Magnetic model (III)

November 2011 Full-simulation production

- Rad-bhabha: ~10k bunch crossings
- Pairs: ~100k bunch crossings
- Touschek:
 - LER: ~180k primaries (losses at beam pipe)
 - HER: ~85k primaries (losses at beam pipe)
- See more details about these samples in my report on Parallel Parallel VII: Computing – FullSim & Background (Thursday, 15 December at 9am)

Local coordinates:

- Longitudinal: axis of the magnetic cylinder and pointing away the IP
- Angular (φ): angle w.r.t. the local (transverse) X-axis on the horizontal plane
 - QD0, QD0H, QF1 and QF1H: local X-axis points to the global Z-axis
 - Anti-solenoids: local X-axis is the same as global X-axis

Local coordinates:

- Longitudinal: axis of the magnetic cylinder and pointing away the IP
- Angular (φ): angle w.r.t. the local (transverse) X-axis on the horizontal plane
 - QD0, QD0H, QF1 and QF1H: local X-axis points to the global Z-axis
 - Anti-solenoids: local X-axis is the same as global X-axis

Local coordinates:

- Longitudinal: axis of the magnetic cylinder and pointing away the IP
- Angular (φ): angle w.r.t. the local (transverse) X-axis on the horizontal plane
 - QD0, QD0H, QF1 and QF1H: local X-axis points to the global Z-axis
 - Anti-solenoids: local X-axis is the same as global X-axis

Local coordinates:

- Longitudinal: axis of the magnetic cylinder and pointing away the IP
- Angular (φ): angle w.r.t. the local (transverse) X-axis on the horizontal plane
 - QD0, QD0H, QF1 and QF1H: local X-axis points to the global Z-axis
 - Anti-solenoids: local X-axis is the same as global X-axis

Using the full-sim production samples compute for every magnet:

- Absorber power and doses (per year, i.e. 365 days) in bins of longitudinal vs φ local coordinates
- Total absorbed power
- Value of the bin with the maximum absorbed dose

Results

- I will show the results for the Rad-bhabha samples for some of the magnets
- The results for all the magnets and samples can be seen at the links below
 - Rad-bhabha:

http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/Magnets_Dose_Studies/Plots_RadBhabha_background_AbsDose_FullProduction.pdf

Pairs:

http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/Magnets_Dose_Studies/Plots_Pairs_background_AbsDose_FullProduction.pdf

Touschek LER:

http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/Magnets_Dose_Studies/Plots_Touschek_LER_background_AbsDose_FullProduction.pdf

Touschek HER:

http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/Magnets_Dose_Studies/Plots_Touschek_HER_background_AbsDose_FullProduction.pdf

Results: Doses on QD0-HER-down

Results: Doses on QD0-LER-down

Results: Doses on AS2 (Z>0)

Results: Total absorbed power (I)

Results: Total absorbed power (II)

Results: Maximum absorbed dose

Summary

- SuperB conducting magnets and cryostat material implemented in Bruno
- SuperB conducting magnets instrumented for absorbed doses studies
- Performed the analysis with all the full-sim production samples
 - Main background contribution from Rad-bhabha by around two order of magnitude
 - Absorbed power are from 10 to 90 mWatts
 - Total absorbed power for Z>0 and Z<0 are 370 and 350 mWatt, respectively
- Ready to provide any other requests of new plots/quantities for this analysis

