Sensitivity studies on mixing and CP violation in charm at $\Psi(3770)$ and Y(4S) at SuperB

M. Giorgi¹, F. Martínez-Vidal², N. Neri³, A. Oyanguren²,

M. Rama⁴, P. Ruiz², P. Villanueva²

¹ Università and INFN Pisa, ² IFIC Valencia, ³ INFN Milano, ⁴ INFN Laboratori Nazionali di Frascati

SuperB collaboration meeting

15 December 2011, Frascati

Outline

- Goals and general considerations
- Monte Carlo studies
- Sensitivity studies and results
- Summary and next steps

Goal

- Estimate and compare the experimental sensitivity on charm mixing and CP violating parameters at SuperB:
 - > Y(4S)
 - $\triangleright \Psi(3770)$ as a function of CM boost and detector configuration
- First step: study the 2-body decays
 - > preliminary results presented today
- Second step: include the 3-body decays

General considerations

• At Y(4S)

- ► Flavor tagged D⁰ through D*+ \rightarrow D⁰ π + decay. We denote the D* flavor tag with the label lX
- \triangleright D⁰ can be reconstructed in flavor *l*X, CP, Kπ and multibody (e.g. Ksππ) final states. Relatively high purity due to m(D⁰) and Δ m=m(D^{*+})-m(D⁰)
- ➤ Flavor mistag ~0.2%
- ➤ Proper time resolution is about $\tau(D^0)/4 \approx 0.1$ ps

Double tags @ Ψ(3770)

Modes with D* tag @ Y (4S)

• At Ψ(3770)

- ➤ Coherent D⁰D⁰ production
- \triangleright Both D mesons can be reconstructed in *l*X, CP, Kπ and Ksππ final states, with very low background
- \triangleright Flavor mistag ~0.2% with eX,
- Time-dependent measurements require larger CM boost compared to the Y(4S) case to achieve similar time

	CP-	Κπ	lX	Κεππ
CP+	X	X	XX	X
CP-		X	XX	X
Κπ		X	XX	X
lX			XX	XX
Κsππ				X

resolution, but reconstruction efficiency decreases with large CM boost. Need to determine the optimal boost range.

Time-dependent rates

• We have derived the time-dependent rates for several combinations of tags

	CP-	Κπ	lX	Κεππ
CP+	X	X	XX	X
CP-		X	XX	X
Κπ		X	XX	X
lX			XX	XX
Κεππ				X

- ➤ Complete expressions
- ➤ Simplified expressions with CPT invariance, CP conserved in decay, and second order in x, y

Example: flavor tag

At y(3770):

Identical time-dependence wrt $\Upsilon(4S)$ when using flavor tag!

$$\frac{d\Gamma[V_{\rm phys}(t_1,t_2)\to f_1f_2]/dt}{e^{-\Gamma|\Delta t|}\mathcal{N}_{f_1f_2}} = \\ (|a_+|^2 + |a_-|^2)\cosh(y\Gamma\Delta t) + (|a_+|^2 - |a_-|^2)\cos(x\Gamma\Delta t) \\ -2\mathcal{R}e((a_+^*a_-)\sinh(y\Gamma\Delta t) + 2\mathcal{I}m(a_+^*a_-)\sin(x\Gamma\Delta t) \\ a_+ \equiv \bar{A}_{f_1}A_{f_2} - A_{f_1}\bar{A}_{f_2}, \\ a_- \equiv -\sqrt{1-z^2}\left(\frac{q}{p}\bar{A}_{f_1}\bar{A}_{f_2} - \frac{p}{q}A_{f_1}A_{f_2}\right) + z\left(\bar{A}_{f_1}A_{f_2} + A_{f_1}\bar{A}_{f_2}\right) \end{aligned}$$

$$z = \textit{CPT violation parameter } q, p = \textit{indirect CP violation parameters}$$

At $\Upsilon(4S)$ using D^{*+} tagged events:

$$\frac{d\Gamma[M_{\text{phys}}^{0}(t) \to f]/dt}{e^{-\Gamma t} \mathcal{N}_{f}} = \frac{(|A_{f}|^{2} + |(q/p)\bar{A}_{f}|^{2}) \cosh(y\Gamma t) + (|A_{f}|^{2} - |(q/p)\bar{A}_{f}|^{2}) \cos(x\Gamma t)}{+2\mathcal{R}e((q/p)A_{f}^{*}\bar{A}_{f}) \sinh(y\Gamma t) - 2\mathcal{I}m((q/p)A_{f}^{*}\bar{A}_{f}) \sin(x\Gamma t)}$$

Example: Kπ vs CP tag

no direct CPV assumed here

 $K^{\mp}\pi^{\pm}$ decays with CP tag

$$R_{odd}(S_{\eta}, K^{-}\pi^{+}; \Delta t) = \left| A_{S_{\eta}} A_{K^{-}\pi^{+}} \right|^{2} \left\{ 2 \left(1 + 2\eta \sqrt{R_{D}} \cos \delta_{K\pi} + R_{D} \right) + \left[\left(\eta \left| \frac{p}{q} \right| \cos \phi + \sqrt{R_{D}} \cos(\delta_{K\pi} - \phi) \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) + R_{D} \left| \frac{q}{p} \right| \cos \phi \right) y + \left(-\eta \left| \frac{p}{q} \right| \sin \phi + \sqrt{R_{D}} \sin(\delta_{K\pi} - \phi) \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) + R_{D} \left| \frac{q}{p} \right| \sin \phi \right) x \right] (\Gamma \Delta t) + \frac{1}{2} \left[\left(\left(1 + \left| \frac{p}{q} \right|^{2} \right) + 2\eta \sqrt{R_{D}} \left(\cos \delta_{K\pi} + \cos(\delta_{K\pi} - 2\phi) \right) + R_{D} \left(1 + \left| \frac{q}{p} \right|^{2} \right) \right) y^{2} - \left(\left(1 - \left| \frac{p}{q} \right|^{2} \right) + 2\eta \sqrt{R_{D}} \left(\cos \delta_{K\pi} - \cos(\delta_{K\pi} - 2\phi) \right) + R_{D} \left(1 - \left| \frac{q}{p} \right|^{2} \right) \right) x^{2} \right] (\Gamma \Delta t)^{2} \right\}$$

Example: double $K\pi$ and lX tag

no direct CPV assumed here

Double $K^{\mp}\pi^{\pm}$ decays

$$R_{odd}(K^{-}\pi^{+}, K^{-}\pi^{+}; \Delta t) = |A_{K^{-}\pi^{+}}|^{4} \left| \frac{p}{q} \right|^{2} \left[1 + \left| \frac{q}{p} \right|^{4} R_{D}^{2} - 2R_{D} \left| \frac{q}{p} \right|^{2} \cos[2(\delta_{K\pi} - \phi)] \right] \frac{x^{2} + y^{2}}{2} (\Gamma \Delta t)^{2}$$

$$R_{odd}(K^{+}\pi^{-}, K^{+}\pi^{-}; \Delta t) = |A_{K^{+}\pi^{-}}|^{4} \left| \frac{q}{p} \right|^{2} \left[1 + \left| \frac{p}{q} \right|^{4} R_{D}^{2} - 2R_{D} \left| \frac{p}{q} \right|^{2} \cos[2(\delta_{K\pi} + \phi)] \right] \frac{x^{2} + y^{2}}{2} (\Gamma \Delta t)^{2}$$

Double semileptonic decays

$$R_{odd}(l^{+}X^{-}, l^{+}X^{-}; \Delta t) = |A_{l^{+}X^{-}}|^{4} \left| \frac{p}{q} \right|^{2} \frac{x^{2} + y^{2}}{2} (\Gamma \Delta t)^{2}$$
$$R_{odd}(l^{-}X^{+}, l^{-}X^{+}; \Delta t) = |A_{l^{-}X^{+}}|^{4} \left| \frac{q}{p} \right|^{2} \frac{x^{2} + y^{2}}{2} (\Gamma \Delta t)^{2}$$

SuperB fast simulation (FastSim)

FastSim studies: Dt reconstruction

- The flight lengths of the two Ds are reconstructed through a combined beam spot constrained vertex fit
- Proper times are computed from the flight lengths and the D momenta

FastSim studies: Δt resolution

examples:

FastSim studies: Δt resolution vs CM boost

FastSim studies: ε_{geo} vs CM boost

Sensitivity studies: overview

- For Ψ(3770) modes
 - > Extrapolate CLEOc yields (includes cross-sections and selection efficiencies)
 - > Correct by SuperB geometrical efficiency vs CM boost
 - ➤ Evaluate triple Gaussian (TG) resolution function from FastSim vs CM boost
- For Y(4S) modes, extrapolate BaBar yields
 - ightharpoonup TG proper time resolution of \sim 0.15 ps (0.1 ps core)
- Toy MC generator and fitter developed
 - For now focus on 2-body decays
 - ➤ the next step will be 3-body decays

simulated datasets: 75 ab⁻¹ at Y(4S) 0.5 ab⁻¹ at $\Psi(3770)$ Double tags @ $\Psi(3770)$ Modes with D* tag @ $\Upsilon(4S)$ used in this study

	CP-	Κπ	lX
CP+	X	X	XX
CP-		X	XX
Κπ		X	XX
lX			XX

Sensitivity studies: overview

• Strategy:

- \triangleright Generate O(100) experiments for each double tag
- Perform combined UML fit of given ensemble of 2-body double tags, fitting simultaneously for the mixing and CPV parameters: x, y, arg(q/p), |q/p|
- > Assumed CP conservation in decay
- \triangleright D(K π) strong phase kept fixed
- Generated values are current HFAG averages

simulated datasets: $75 \text{ ab}^{-1} \text{ at } Y(4S)$ 0.5 ab⁻¹ at $\Psi(3770)$

Double tags @ $\Psi(3770)$ Modes with D* tag @ Y(4S)used in this study

	CP-	Κπ	lX
CP+	X	X	XX
CP-		X	XX
Κπ		X	XX
lX			XX

Sensitivity studies: expected num. of events

		LB Ψ(3770)	IB Ψ(3770)	HB Ψ(3770)
Selected	$\Upsilon(4S)$	$\Psi(3770)$	$\Psi(3770)$	$\Psi(3770)$
decays	$75 {\rm ab}^{-1}$	$0.5 \mathrm{ab^{-1}}, \beta \gamma = 0.238$	$0.5 \mathrm{ab^{-1}}, \beta \gamma = 0.56$	$0.5\mathrm{ab^{-1}},\ \beta\gamma = 0.91$
$l^{\pm}X^{\mp}, CP+$	19600000	569395	525890	418331
$l^{\pm}X^{\mp}, CP-$	30900000	685053	612430	491599
$l^{\pm}X^{\mp}, K^{\pm}\pi^{\mp}$	222900000	4181494	3862011	3072118
	(790000)	(13798)	(12744)	(10137)
$l^{\pm}X^{\mp}, K_S^0\pi^+\pi^-$	86600000	828850	689557	498370
$l^{\pm}X^{\mp}, l^{\mp}X^{\pm}$	85300000	1067615	986045	784370
	(50)	(51)	(47)	(38)
$K^{\mp}\pi^{\pm}, K^{\pm}\pi^{\mp}$	N/A	1067615	986045	784370
	(N/A)	(51)	(47)	(38)
$CP+, K^{\mp}\pi^{\pm}$	N/A	309608	285953	227467
$CP-, K^{\mp}\pi^{\pm}$	N/A	291814	260879	209408
CP+, CP-	N/A	92526	82717	66397
$CP+, K_S^0\pi^+\pi^-$	N/A	113691	91553	66770
$CP-, K_S^0 \pi^+ \pi^-$	N/A	115525	93030	67847
$K_S^0 \pi^+ \pi^-, K_S^0 \pi^+ \pi^-$	N/A	290342	217578	142875

Sensitivity studies: toy MC at $\Psi(3770)$

example:

N. Neri - Sensitivity studies on mixing and CPV at threshold - Frascati 15 Dec 2011

Sensitivity studies: toy MC at $\Psi(3770)$

example:

 Y(3770), bg=0.24, perfect resolution, no mistag

• 10 less events (CPU memory limitation)

N. Neri - Sensitivity studies on mixing and CPV at threshold - Frascati 15 Dec 2011

Sensitivity studies: toy MC at Y(4S)

example:

• Y(4S), perfect resolution, no mistag

• 200 less events (CPU memory limitation)

Sensitivity studies: toy MC at Y(4S)

example:

• Y(4S), perfect resolution, no mistag

• 200 less events (CPU memory limitation)

Scenarios considered in our study

Ψ(3770), 500 fb⁻¹

CM boost (bg)	time resolution	mistag
0.24	realistic	0
0.56	realistic	0
0.90	realistic	0
0.24	perfect	0
0.24	the one at bg=0.15	0
0.24	the one at $bg=0.56$	0
0.24	the one at bg=0.90	0
0.24 [large x,y]	perfect	0
0.24 [no CPV]	perfect	0

Y(4S), 75 ab⁻¹, bg=0.24

time resolution	mistag	notes
realistic	0	
perfect	0	
perfect	2%	
perfect	0	large x,y
perfect	0	no CPV

effect of $\sim 0.2\%$ mistag under evaluation

Sensitivity: $\Phi = arg(q/p)$

N. Neri - Sensitivity studies on mixing and CPV at threshold - Frascati 15 Dec 2011

Sensitivity: |q/p|

N. Neri - Sensitivity studies on mixing and CPV at threshold - Frascati 15 Dec 2011

Sensitivity: x

N. Neri - Sensitivity studies on mixing and CPV at threshold - Frascati 15 Dec 2011

Sensitivity: y

N. Neri - Sensitivity studies on mixing and CPV at threshold - Frascati 15 Dec 2011

Summary

- Flavor tag at $D\overline{D}$ threshold provides identical time-dependence than at Y(4S) using D* tagging, and less events, although in a different environment
- DD threshold is unique to provide CP, $K\pi$ and $Ks\pi\pi$ tags
- ullet Variation of Δt resolution and geometrical acceptance vs CM boost was evaluated
- Estimated the impact on physics with 2-body decays
 - \triangleright Combined fit to all 2-body double-tags allows determination of x, y, arg(q/p), $\lfloor q/p \rfloor$
 - \triangleright Best sensitivity at $\Psi(3770)$ for intermediate boost, bg ~ 0.3 -0.6

Parameter	Sensitivity @ Y (4S) with time resolution, no mistag. 75 ab ⁻¹	Best sensitivity @ $\Psi(3770)$ with time resolution (bg=0.56), no mistag. 0.5 ab ⁻¹
x	0.017%	0.11%
y	0.008%	Relative effect of flavor mista
Arg(q/p)	0.8 deg	similar at $\Psi(3770)$ and $\Upsilon(4S)$
q/p	0.5%	3.7%

- ightharpoonup error per ab⁻¹ at Y (3770) \sim ½ error per ab⁻¹ at Y (4S) (2-body only, no mistag)
- \triangleright error at $\Psi(3770)$ [0.5ab⁻¹] \sim 6x error at Y(4S) [75ab⁻¹] (2-body only, no mistag)

Ongoing study: performance vs IP position

Effect of a possible shift of the IP from the nominal position

ϵ_{geo} vs CM boost as a function of the IP position

N. Neri - Sensitivity studies on mixing and CPV at threshold - Frascati 15 Dec 2011

Next steps

- Finalize 2-body sensitivity studies
- Sensitivity studies on mixing and CPV parameters for 3-body decays with a time-dependent Dalitz plot analysis:
 - \triangleright Dalitz plot model independent approach is to be pursued at SuperB. For this, it is crucial to have access to $\Psi(3770)$ data
- Consider two different scenarios:
 - Time-dependent measurements at $\Upsilon(4S)$ with model independent coefficients (c_i , s_i) obtained with time-integrated Psi(3770) data
 - \triangleright Time-dependent measurements at $\Psi(3770)$
- Set up simulation technology for 3-body Toy MC studies.

Model independent approach for 3-body decays

▶ A. Bondar, A. Poluektov, V. Vorobiev have proposed a model independent analysis of 3-body D⁰ decays for mixing and CPV. See Phys. Rev. D 82, 034033 (2010)

Sensitivity relies on the variation of the yields in different regions of the Dalitz plot along the time. No amplitude analysis is required.

$$\frac{d\Gamma_{i}[D_{\mathrm{phys}}^{0}\to f]/dt}{e^{-\Gamma t}\mathcal{N}_{f}} = \left[\left(T_{i} + |\frac{q}{p}|^{2}\bar{T}_{i}\right)\cosh(\Gamma yt) + \left(T_{i} - |\frac{q}{p}|^{2}\bar{T}_{i}\right)\cos(\Gamma xt) \right. \\ \left. + \left. 2\left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi - s_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\sin\phi\right)\sinh(\Gamma yt) \right. \\ \left. \left. + \left. 2\left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi - s_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\sin\phi\right)\sinh(\Gamma yt) \right. \\ \left. - \left. 2\left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\sin\phi + s_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right)\sin(\Gamma xt) \right] \right. \\ \left. - \left. 2\left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\sin\phi + s_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right)\sin(\Gamma xt) \right] \right. \\ \left. - \left. 2\left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\sin\phi + s_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right)\sin(\Gamma xt) \right] \right. \\ \left. - \left. 2\left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\sin\phi + s_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right)\sin(\Gamma xt) \right] \right. \\ \left. - \left. 2\left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\sin\phi + s_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right)\right] \right] \right. \\ \left. - \left. 2\left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\sin\phi + s_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right)\right] \right] \right] \right. \\ \left. - \left. 2\left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\sin\phi + s_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right)\right] \right] \right] \right] \\ \left. - \left. 2\left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\sin\phi + s_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right)\right] \right] \right] \right] \\ \left. - \left. 2\left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\sin\phi\right)\right] \right] \right] \right] \right] \right] \left. - \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\sin\phi\right] \right] \left. \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right)\right] \right] \right] \\ \left. - \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\sin\phi\right] \right] \left. \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right]\right] \right] \right] \left. - \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right] \right] \left. \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right]\right] \left. \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right] \right] \\ \left. - \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right]\right] \left. \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right] \right] \left. \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right]\right] \left. \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right] \right] \left. \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right]\right] \left. \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right]\right] \left. \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right]\right] \left. \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right]\right] \left. \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right]\right] \left. \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right]\right] \left. \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|\frac{q}{p}\right|\cos\phi\right] \left. \left(c_{i}\sqrt{T_{i}\bar{T}_{i}}\left|$$

where: $i = region \ of \ Dalitz \ plot$

where:
$$i = region \ of \ Dalitz \ plot$$

$$A_f = |A_f|e^{i\delta f} \qquad \qquad \bar{A}_f = |\bar{A}_f|e^{i\bar{\delta} f} \qquad \qquad \text{Can be measured at Y(4S) or at } \psi(3770)$$

$$\int_i |A_f|^2 d\mathcal{P} = \bar{T}_i \qquad \qquad \int_i |A_f| |\bar{A}_f| \cos(\bar{\delta}_f - \delta_f) d\mathcal{P} = c_i$$

$$\int_i \mathcal{I} m(A_f^* \bar{A}_f) d\mathcal{P} = \int_i |A_f| |\bar{A}_f| \sin(\bar{\delta}_f - \delta_f) d\mathcal{P} = c_i$$

$$\int_i \mathcal{I} m(A_f^* \bar{A}_f) d\mathcal{P} = \int_i |A_f| |\bar{A}_f| \sin(\bar{\delta}_f - \delta_f) d\mathcal{P} = s_i$$

$$\int_i \mathcal{I} m(A_f^* \bar{A}_f) d\mathcal{P} = \int_i |A_f| |\bar{A}_f| \sin(\bar{\delta}_f - \delta_f) d\mathcal{P} = s_i$$

$$\int_i \mathcal{I} m(A_f^* \bar{A}_f) d\mathcal{P} = \int_i |A_f| |\bar{A}_f| \sin(\bar{\delta}_f - \delta_f) d\mathcal{P} = s_i$$

N. Neri - Sensitivity studies on mixing and CPV at threshold - Frascati 15 Dec 2011

INFN Determination of Dalitz plot parameters: T_i, c_i, s_i

- c_i, s_i determination requires DD coherent production. The method has been proved to work well by CLEO-c. See Phys. Rev. D 82, 112006 (2010).
- c_i , s_i from time integrated analysis of $\psi(3770)$ data is affected by $\mathcal{O}(x^2, y^2)$ approximations (relatively small).
- c_i, s_i extraction: no CP conservation assumption required if doubling number of bins in the Dalitz plot.

the ith bin is defined by the condition $2\pi(i-3/2)/\mathcal{N} < \Delta\delta_D(m_+^2, m_-^2) < 2\pi(i-1/2)/\mathcal{N},$

- T_i , T_i can be measured at Ψ(3770) with a time-integrated analysis and then fixed in the time-dependent mixing analysis at the $\Upsilon(4S)$.
- T_i, \overline{T}_i can also be determined simultaneously in the time-dependent mixing analysis at the $\Upsilon(4S)$ if helpful for reducing systematic errors (different efficiencies, resolutions, etc.)

INFN Sensitivity results for mixing and CPV parameters for $D^0 \rightarrow K_S \pi^+ \pi^-$

- Sensitivity studies for mixing and CPV with model independent approach. From Phys.Rev.D82, 034033 (2010):
 - assume perfect proper time resolution and no bkg;
 - assume very precise determination of c_i, s_i (considering 2x10⁶ flavor tagged $D^0 \rightarrow K_S \pi^+ \pi^-$ decays at $\Psi(3770)$, will be available at SuperB).

TABLE II: Statistical sensitivity to the mixing and \mathcal{CP} violation parameters for the time-dependent Dalitz plot analysis. Two strategies are considered: (i) T_i fixed from charm factory data and (ii) T_i taken as free parameters.

Parameter	Pre	cision	Pre	cision
	T_i fixed T_i floated T_i		T_i fixed	T_i floated
$x_D (10^{-4})$	17	22	2.0	2.5
$y_D (10^{-4})$	13	16	1.5	1.8
$ q/p (10^{-2})$	9	9	1.0	1.0
φ (°)	5	5	0.6	0.6

B Factories 1M signal events SuperB 75 M signal events

▶ Similar approach is valid also for $D^0 \rightarrow K^+\pi\pi^0$: very sensitive decay mode for mixing and CP violation. Using a model independent approach is possible to extract mixing parameters x, y directly also in this case.

From Mike Sokoloff

Sensitivities

channel	# of events	δx	δy	Comments
$K_S^0 \pi^- \pi^+, K^- e^+ \nu_e$	720K	0.15%	0.09%	BaBar $K_S^0 \pi^- \pi^+$ amplitudes
$K^0_S \pi^- \pi^+, K^- \pi^+$	$865\mathrm{K}$	$\boldsymbol{0.18\%}$	$\boldsymbol{0.05\%}$	$\cos \delta_{K\pi} = 0.95$
$K_S^0\pi^-\pi^+,\ h^-h^+$	110K	_	0.21%	
$K^0_S \pi^- \pi^+, \; K^0_S \pi^- \pi^+$	$285\mathrm{K}$	0.24%	0.16%	
$K^-\pi^+\pi^0, \ K^-e^+\nu_e$	4500	0.06%	0.06%	$\cos \delta_{K\pi\pi^0} = 0.95, R_D = 0.16\%$ BaBar $K\pi\pi^0$ amplitudes
$K^-\pi^+\pi^0, \ K^-\pi^+$	5000	0.06%	0.05%	
$K^-\pi^+\pi^0, \ K^-\pi^+\pi^0$	7200	0.07%	0.06%	
$K^-\pi^+\pi^0, h^-h^+$	460K	_	0.10%	
$K^-\pi^+,~K^-e^+ u_e$	10,600	0.27%	0.08%	$\cos\delta_{K\pi}=0.95$
$K^-\pi^+,\;h^-h^+$	187K	_	0.16%	$\cos \delta_{K\pi} = 0.95$
$h^-h^+,~K^-e^+ u_e$	345K	_	0.12%	
$\pi^-\pi^+\pi^0,\; K^-e^+ u_e$	120K	0.28%	0.22%	BaBar $\pi^-\pi^+\pi^0$ amplitudes
$\pi^-\pi^+\pi^0, \; K^-\pi^+$	120K	0.56%	0.15%	
$\pi^-\pi^+\pi^0, h^-h^+$	$20\mathrm{K}$	_	0.5%	

Wrong Sign $D^0 \rightarrow K^+\pi^-\pi^0$ is the most sensitive decay mode!

backup

FastSim design overview

- Simplified detector element description
 - cylinders, rings, cones, ...
- Particle passage through detector fully modeled
 - ionization energy loss, multiple scattering, bremsstrahlung, photon conversion, EM/hadronic showering, ...
- Parameterized detector response
 - track hit resolution, Cherenkov ring resolution, shower shape, ...
- Reconstruction of tracks, clusters, Cherenkov rings, ...
- Output compatible with BaBar analysis tools
 - vertexing, B-flavor tagging, particle Id selectors, ...

HFAG averages

HFAG 2011

Parameter	No CPV	No direct CPV	CPV-allowed	$CPV\mbox{-allowed }95\%$ C.L.
x (%)	$0.65^{+0.18}_{-0.19}$	0.63 ± 0.19	$0.63^{+0.19}_{-0.20}$	[0.24, 0.99]
y (%)	0.74 ± 0.12	0.75 ± 0.12	0.75 ± 0.12	[0.52, 0.99]
δ (°)	$21.3^{+9.8}_{-11.1}$	$22.5{}^{+9.9}_{-11.2}$	$22.4^{+9.7}_{-11.0}$	[-2.2, 40.9]
R_D (%)	0.3308 ± 0.0080	0.3306 ± 0.0080	0.3311 ± 0.0081	[0.315, 0.347]
$A_D~(\%)$	_	_	-1.7 ± 2.3	[-6.3, 2.8]
q/p	_	1.02 ± 0.04	$0.89^{+0.17}_{-0.15}$	[0.61, 1.24]
φ (°)	_	$-1.05^{+1.89}_{-1.94}$	$-10.1^{+9.4}_{-8.8}$	[-27.2, 8.6]
$\delta_{K\pi\pi}$ (°)	$18.0^{+21.7}_{-22.8}$	$19.4^{+21.8}_{-22.9}$	$19.5^{+21.8}_{-22.9}$	[-26.1, 61.8]
A_{π}	_	_	0.22 ± 0.28	[-0.34, 0.76]
A_K	_	_	-0.20 ± 0.24	[-0.67, 0.27]
$x_{12} \ (\%)$	_	0.63 ± 0.19	_	[0.25, 0.99]
$y_{12}~(\%)$	_	0.75 ± 0.12	_	[0.52, 0.99]
$\phi_{12}(^\circ)$	_	$2.5^{+5.2}_{-4.6}$	_	[-7.1, 15.8]

Sensitivity studies: summary of results

Time resolution	Mistag	$\sigma(x)$	$\sigma(y)$	$\sigma(\phi)$	$\sigma(q/p)$
Perfect	0	0.00076	0.00044	0.077	0.031
Perfect	0	0.00059	0.00043	0.007	0.003
Perfect	0	0.00081	0.00027	0	0
HB TG $(0.25/0.20 \text{ ps})$	0	0.00098	0.00046	0.077	0.034
IB TG $(0.40/0.28 \text{ ps})$	0	0.00100	0.00051	0.078	0.035
LB TG $(0.66/0.39 \text{ ps})$	0	0.00104	0.00054	0.103	0.037
VLB TG $(1.27/0.76 \text{ ps})$	0	0.00107	0.00067	0.149	0.061
HB TG $(0.25/0.20 \text{ ps})$	0	0.00118	0.00056	0.093	0.041
IB TG $(0.40/0.28 \text{ ps})$	0	0.00108	0.00054	0.084	0.037
Perfect	2%	0.00210	0.00062	0.119	0.097
Perfect	0	0.00021	0.00007	0.012	0.005
Perfect	0	0.00010	0.00008	0.001	0.001
Perfect	0	0.00012	0.00004	0	0
TG (0.17/0.10 ps)	0	0.00017	0.00008	0.014	0.005
Perfect	2%	0.00030	0.00011	0.019	0.014
	Perfect Perfect HB TG (0.25/0.20 ps) IB TG (0.40/0.28 ps) LB TG (0.66/0.39 ps) VLB TG (1.27/0.76 ps) HB TG (0.25/0.20 ps) IB TG (0.40/0.28 ps) Perfect Perfect Perfect Perfect TG (0.17/0.10 ps)	Perfect 0 Perfect 0 HB TG (0.25/0.20 ps) 0 IB TG (0.40/0.28 ps) 0 LB TG (0.66/0.39 ps) 0 VLB TG (1.27/0.76 ps) 0 HB TG (0.25/0.20 ps) 0 IB TG (0.40/0.28 ps) 0 Perfect 2% Perfect 0 Perfect 0 Perfect 0 TG (0.17/0.10 ps) 0	Perfect 0 0.00059 Perfect 0 0.00081 HB TG (0.25/0.20 ps) 0 0.00098 IB TG (0.40/0.28 ps) 0 0.00100 LB TG (0.66/0.39 ps) 0 0.00104 VLB TG (1.27/0.76 ps) 0 0.00107 HB TG (0.25/0.20 ps) 0 0.00118 IB TG (0.40/0.28 ps) 0 0.00108 Perfect 0 0.00021 Perfect 0 0.00012 Perfect 0 0.00012 TG (0.17/0.10 ps) 0 0.00017	Perfect 0 0.00076 0.00044 Perfect 0 0.00059 0.00043 Perfect 0 0.00081 0.00027 HB TG (0.25/0.20 ps) 0 0.00098 0.00046 IB TG (0.40/0.28 ps) 0 0.00100 0.00051 LB TG (0.66/0.39 ps) 0 0.00104 0.00054 VLB TG (1.27/0.76 ps) 0 0.00107 0.00067 HB TG (0.25/0.20 ps) 0 0.00118 0.00056 IB TG (0.40/0.28 ps) 0 0.00108 0.00054 Perfect 0 0.00021 0.000062 Perfect 0 0.00012 0.00008 Perfect 0 0.00012 0.00004 TG (0.17/0.10 ps) 0 0.00017 0.00008	Perfect 0 0.00076 0.00044 0.077 Perfect 0 0.00059 0.00043 0.007 Perfect 0 0.00081 0.00027 0 HB TG (0.25/0.20 ps) 0 0.00098 0.00046 0.077 IB TG (0.40/0.28 ps) 0 0.00100 0.00051 0.078 LB TG (0.66/0.39 ps) 0 0.00104 0.00054 0.103 VLB TG (1.27/0.76 ps) 0 0.00107 0.00067 0.149 HB TG (0.25/0.20 ps) 0 0.00118 0.00056 0.093 IB TG (0.40/0.28 ps) 0 0.00108 0.00054 0.084 Perfect 2% 0.00210 0.00062 0.119 Perfect 0 0.00010 0.00008 0.001 Perfect 0 0.00010 0.00008 0.001 TG (0.17/0.10 ps) 0 0.00017 0.00008 0.014

	Parameter	Sensitivity @ (4S) with time resolution, no mistag. 75 ab ⁻¹	Best sensitivity @ y(3770) with time resolution (bg=0.56), no mistag. 0.5 ab ⁻¹	
	x	0.017%	0.11%	
N.	y	0.008%	0.05%	Relative effect of flavor mistag similar at Y(3770) and W(4S)
	Arg(q/p) Nen Sensitivity	0.8 deg studies on mixing and CPV at threshold	4.8 deg - Frascati 15	
	q/p	0.5%	3.70% 2011	