

'IFR Background Report

Valentina Santoro INFN Ferrara

II-SuperB Collaboration Meeting 14 Dec 2011

Hot regions

Backward

Endcap

HER

Barrel: innermost layers, mostly neutrons

FWD encaps (hottest region): inner layer and outer layers (BEAM halo),

neutrons, electron and photons

BWD encaps: inner layer and small radii

Barrel

Outline

- Radiative BhaBha Background Studies (neutrons, photons and electron)
- ✓ Touschek background (neutrons, photons and electron)
- ✓ Pair background (neutrons, photons and electron)
- ✓ Background Studies on our FEEs

Beam Composition

For BhaBha, Touschek and Pair events the particle crossing the IFR are photons, electron, protons, neutrons and heavy nuclei

Neutrons

Why do we have to worry about neutrons

- Neutrons damage silicon devices → Neutrons damage
 SiPM
- The silicon damage function has a strong dependance on the energy spectrum therefore we scaled all the doses in this presentation to 1MeV equivalent accordingly to ASTM E 722 93.

Neutron Energy Distributions for Radiativa BhaBha wents

The Energy distribution for FWD and BWD Endcap are similar

Neutron Rates

Rate vs Z-coordinate for Barrel

Cunny

Rate of $450\text{Hz/cm}^2 \rightarrow \text{about}$ $3x10^9 \text{ neutrons/cm}^2 \text{ for a year}$

All the rate are normalized to 1MeV energy

Rate vs radius for BWD Endcap

Rate vs radius for FWD Endcap

Photons

Why do we have to worry about photons

High Energy Photons convert in e⁺e⁻ that produce signal in the detector

Photon Energy Distributions for Radiativa BhaBha events

Barrel

anarmy ragion

Photons of energy ~0.512 MeV are from annihilation radiation

6000

5000

4000

3000

2000

1000

Photons of energy ~2.223 MeV are from neutron capture on Hydrogen

E(MeV)

The Energy distribution for FWD and BWD Endcap are similar

γ rates for Different layers

Rate vs Z-coordinate for Barrel

This rate is due only to photon with E > 10keV

Electron Energy Distributions for Radiativa BhaBha wents

Backward Endcap

Forward Endcap

Electron rates for Different layers

Rate vs Z-coordinate for Barrel

Summary on BhaBha studies

- ✓ The neutrons rates are very high and dangerous for our Sipm
- ✓ The photons and electrons rates are high but they should not be a problem

Touschek events studies

SuperB

Touschek scattering results from a Coulomb collision of two relativistic electrons in a particle beam, producing an instantaneous change in particle energy

Why we don't like Touschek events:

Scattered e⁺/e⁻ goes off trajectory -> lost at beam pipe wall near IP ->creates shower ->reach detector

Touschek events HER

Energy distribution for Touschek events

-2

LogE(GeV)/log(10)

Photons

-6

Rate(Hertz)/(0.10logE(GeV)/log(10))

-12

-10

Neutron Rates for Touschek HER events

Rate vs Z-coordinate for Barrel

Rates are small but not negligible

Rate vs radius for BWD Endcap

Rate vs radius for FWD Endcap

Touschek events LER

SuperB

Rate vs Z-coordinate

Rates for LER are smaller than for HER

Summary on Touschek studies

- ✓ Touschek background studied for the HER and LER
- Results for the HER and LER show that the rate are small compared to the BhaBha one.

Pair Production

$$e^+e^-\rightarrow e^+e^-\gamma\gamma\rightarrow e^+e^-e^+e^-$$

Neutron, Photon and Electrons Rates for Pair events

Rate vs Z-coordinate for Barrel

Pair background (neutrons, photons and electrons) is small compared to the BhaBha one and to the Touschek events

Neutron Rates from different background Sources

Energy distribution: Barrel

Rate for Barrel LO

Valentina Santoro II-Super

Gamma Rates from different background Sources

Energy distribution: Barrel

Rate for Barrel LO

Electron Rates from different background Sources

Energy distribution: Barrel

Rate for Barrel LO

Valentina Santoro II-SuperB C

Radiative BhaBha background crossing the IFR FEE boards

Present layout of the IFR crates

Neutron Rates for FEEs Electronics

2D view of one FEE

Crates located in the FWD have systematically higher rates compared to that one in the Barrel

Mean Rate for each FEE in different Crates

Neutron Energy Distribution for FEEs Electronics

Energy_Crate 2 for FWD

The Energy distribution

change for Electronics crate in

the Barrel respect to the one in

the FWD and BWD endcap

Absorbed Dose for each FEE Crates

Summary

- ✓ Radiative BhaBha, Touschek and Pair backgrounds have been studied in details.
- ✓ The effect of these backgrounds have been also studied on our FEEs
- ✓ IFR TDR background on writing

BACK-UP SLIDES

Electrons

Why do we have to worry about electrons

Electrons are charged particle that produce signals