

Timing Studies for SuperB

M. Bellato, D. Bortolato – INFN Padova

2nd Collaboration Meeting LNF – 15 Dec 2011

SuperB Schematic View (Injector)

Timing and Synchronization Definitions

- Accelerator Timing
 - Eg. : triggers for acceleration & diagnostics
 - 'Triggers' are signals from the timing system used by hardware to accelerate & measure the beam
- Synchronization
 - 476 MHz RF phase reference distribution (Master Local Oscillator)
 - 2856 MHz and fractional frequencies derived from MLO
 - 500 fs p-p jitter max. (source: SuperB Progress Report)

Timing and Synchronization Domains

- 20ms Pulse-to-pulse, Beam mode flavors
- us pulsed power supplies
- ns Shape of pulses for pulsed microwave
- ps Beam timing, instrumentation
- fs Microwave phases

Timing Performance Requirements

Parameter	Value
Maximum trigger rate	100 Hz (50Hz overlapped op. for e^+/e^-)
Min trigger duration	420 ps
Clock Frequency	476 MHz
Lock-in Bandwidth	+/- 50 KHz
Delay coarse step size	2.1 ns
Delay fine step size	5 ps
Delay range	> 1 s
Max timing jitter w.r.t clock	2 ps rms
Long term stability	< 10 ps
Signal level	NIM, CML, TTL

Injector operation

Timing system functional requirements

- Coordinate operation of
 - HER/LER injection
 - e- / e+ (with DR) extraction
 - Bucket selection
 - Guns & pulsed magnets triggering
 - Diagnostic measurements
 - LLRF triggers and delays
- Potentially hundreds of parameters to be switched within 10 ms

Timing system block diagram

Event based timing system

- Tree-like structure
- Interconnect via high speed serial transceivers at 2.38/4.76
 Gb/s and single mode fibers
- All timing functions in FPGA
- 16bit word of time code + trigger info at 119/238 MHz between master and all receivers
- Enough bandwidth to close loops between receivers and master (e.g. automatic luminosity feedback*)
- Embedded microprocessor can host iCHAOS interface

^{*}A PROPOSED FAST LUMINOSITY FEEDBACK FOR THE SUPER-B ACCELERATOR Kirk Bertsche et al, 2009

Event broadcast concept

Event Reception

A Trigger "Timing Diagram" Example

Transmitter/Receiver Block Diagram

uTCA for Physics

Low Jitter clock distribution < 200fs Independent redundant power supplies

Ultra Low jitter RF signals < 70fs

ing – Frascati 13-16 December

uTCA for Physics

Commercial timing systems

- Micro Research Finland
 - (EVG,EVR) VME, cPCI, PMC
 - Widely deployed (APS, PSI, KEKB, SLAC, ..)
- White Rabbit
 - Not truly commercial (yet)
 - CERN, GSI + National Instruments.
 - Real implementations exist ?
- ...more may exist!

Open Issues

- Technical
 - AC Line 50Hz synchronization
 - Fractional frequencies generation
 - Temperature drift compensation
 - Field bus standard
 - "Hands-on" review of commercial timing systems
- … less "technical"
 - Manpower (for the event distribution system)
 - For custom solution
 - HW + firmware : 3 FTE 4 years
 - SW: 1 FTE 2 years
 - For other trigger modules : ?
 - R&D phase duration + prototyping
 - 1 year
 - Integration : ?
 - Commissioning : ?

Conclusions

- An event based timing system may fulfill SuperB requirements
- The system is complex
 - 3 virtual (HER, LER, DR+Linac) systems to coordinate
 - Must be open to future changes / requirements
 - Has tight jitter requirements
- More discussion with machine and RF designers is needed to iron out all the issues that may impact the timing system (and viceversa)