2nd SuperB Collaboration Meeting MDI Parallel session Dec. 14th 2011

Machine Background Report

Alejandro Pérez INFN – Sezione di Pisa

Outline

New BRN developments:

- Fwd-EMC: New geometry
- FDIRC: Cherenkov photons activated and instrumentation
- New Final Focus model
- Nov. 2011 Full-Sim production
 - Pairs
 - Touschek (LER/HER)

Machine background on the SuperB detector

- SVT
- DCH
- FDIRC
- EMC
- IFR

Summary and Outlook

New BRN Developments

Fwd-EMC

- Request from Stefano Germani to test different options for Fwd-EMC device
 - Nominal configuration uses LYSO (Geometry_CIPE_V00-00-02)
 - New geometries being tested:
 - CSI: Csi with VPT readout (Geometry_CIPE_V00-00-02_CSI)
 - > BGO: Bgo with PMT readout (Geometry_CIPE_V00-00-02_BGO)
 - > PWO: Pwo with PMT readout (Geometry_CIPE_V00-00-02_PWO)
- Nov. 2011 production:
 - Geometry_CIPE_V00-00-02_PWO: Rad-Bhabha (~10k events)

FDIRC

Previously:

- Stand Alone G4 simulation (Doug Roberts)
- BRN: FDIRC geometrical model, no instrumentation
- Currently:
 - A lot of work to insert stand alone model in BRN (Andrea Di Simone and Doug Roberts)
 - Cherenkov photons in the bars can be activates/deactivated with an option on Bruno invovation (-O). No significant increase on computingtime/output-size

Nov. 2011 production:

Cherenkov photons activated for all samples produced

New Final Focus Model

New FF model: Cryostat and Magnets (I)

All magnetic elements are made of the same material (QD0_mixture):

- Density: 7.57 gr/cm³
- Composition: Niobium (0.106), Titanium (0.119), Cooper (0.347) and Iron (0.428)

New FF model: Cryostat and Magnets (II)

BRN implementation

New FF model: Cryostat and Magnets (III)

Alejandro Pérez, 2nd SuperB Collaboration meeting, MDI parallel session Dec 14th 2011

New FF model: Magnetic model

- Previously:
 - detector solenoidal field turned off in final focus magnetic model
- This field is important for an accurate model of two-photon (pairs) backgrounds on SVT. Less important for Rad-Bhaha and Touschek

Implementation:

- Magnitude: 1.5 Tesla
- Direction: Z>0 (0.0,0.0,1.0)
- Volume: field different from zero only inside a cylinder of length 40cm and radius 40cm.

Nov. 2011 Full-Sim Production

Pairs background

- Use diag36 (fastsim) generator to generate pairs (2-photon) primaries
- Kinematic cuts:

X [mm]

- Study the minimum Pt(CM) cut at generator level to not to bias the pairs sample and increase efficiency
- Study the losses at the beam pipes from Pairs to set-up the Pt(CM) cut

Pairs background

- Use diag36 (fastsim) generator to generate pairs (2-photon) primaries
- Kinematic cuts:
 - Study the minimum Pt(CM) cut at generator level to not to bias the pairs sample and increase efficiency
 - Study the losses at the beam pipes from Pairs to set-up the Pt(CM) cut
 - Selects Pt(CM) > 0.55 MeV/c

 $\Rightarrow \sigma(Pt(CM) > 0.55 \text{ MeV/c}) = 4.47 \text{mb} (\sigma(total) = 7.3 \text{mb})$

Pairs background

- Use diag36 (fastsim) generator to generate pairs (2-photon) primaries
- Kinematic cuts:
 - Study the minimum Pt(CM) cut at generator level to not to bias the pairs sample and increase efficiency
 - Study the losses at the beam pipes from Pairs to set-up the Pt(CM) cut
 - Selects Pt(CM) > 0.55 MeV/c
 - $\Rightarrow \sigma(Pt(CM) > 0.55 \text{ MeV/c}) = 4.47 \text{mb} (\sigma(total) = 7.3 \text{mb})$
- Use guinea pig generator to inject pairs primaries in BRN
 - N-int-bunch = Lumi $\times \sigma(Pt(CM) > 0.55 \text{ MeV/c})/f_ = 19.5$ interactions
 - Each events has <N-int-bunch> interactions (4-primaries each)
 - N primaries per event ~ 78 (500 rad-bhabha) ⇒ much faster than Radbhabha

Touschek background: strategy

Primaries for BRN: STAR code (Manuela Boscolo)

- Simulate both Touschek and the beam gas scattering along the beam line
- Transport the scattered particles along the lattice
- Detect the collisions of these particles with the beam pipes (scoring planes)

Typical output:

Touschek background: samples (I)

Touschek background: samples (I)

Touschek background: samples (II)

Nov. 2011 production summary

Rad-Bhabha (fullsim):

- Jobs: 1099 (25 exited), ~10k events
- Size: 1.4 TB
- Pairs (fullsim):
 - Jobs: 350 (22 exited), ~100k events
 - Size: 265 GB
- Touschek HER/LER:
 - Jobs: 1425 (65), ~180 (80k) primaries for LER (HER)
 - Size: 1.1TB

Rad-Bhabha (bg-frames):

- Jobs: 7324 (146 exited), ~900k events
- Size: 39.4G

Machine Background on the SuperB Detector

SVT backgrounds

- 2-photon background dominates
- Touschek-LER seems to have significant impact on outer layers
 - Results from usual macros
 - L0: +20-30% 2photons (see next slide), reduced RadBhabha
 - Touschek became relevant for outer layers (+50%)

LAYERS	May2011 [MHz/cm2] 2phot. Pixels	May2011 [MHz/cm2] 2photons	Dec 2011 [MHz/cm2] 2photons	Dec 2011 [MHz/cm2] Rad Bhabha	Dec 2011 [MHz/cm2] Tousc-HER	Dec 2011 [MHz/cm2] Tousc-LER
L0 phi	55.5	23.3	32.2	0.96	0.52	1.73
L0 z		29.9	40.6	1.6	1.45	4.37
L1 phi	2.0	1.5	1.7	0.12	0.18	0.74
L1 z		0.7	0.85	0.083	0.19	0.77
L2 phi	0.96	0.72	0.88	0.086	0.12	0.56
L2 z		0.35	0.45	0.064	0.14	0.61
L3 phi	0.25	0.194	0.44	0.084	0.055	0.31
L3 z		0.097	0.27	0.056	0.055	0.29
L4 phi	0.014	0.012	0.05	0.014	0.004	0.019
L4 z		0.0076	0.03	0.008	0.003	0.013
L5 phi	0.007	0.006	0.019	0.006	0.002	0.009
L5 z		0.0041	0.014	0.004	0.0016	0.007

DCH backgrounds

D. Lindemann

R. Cenci

DCH occupancies for Rad-bhabha and Pairs

- Rad-bhabha and 2-photon background produce similar occupancies, both 1-2%. Total occupancy ~2-4%
- Touschek (both LER/HER) isn't a concern for DCH (around 1-2 order of magnitude smaller)

FDIRC background

A. Pérez

FDIRC background

EMC backgrounds

S. Germani

- Rad-bhabha samples for London (Oct. 2011) and LNF (Dec. 2011) productions
- LNF sample has a somewhat lower/higher energy spectrum for Fwd/Barrel w.r.t London
- Main differences are solenoidal field and cryostat model

Brl Measured Energy [log(MeV)], MDI parallel session Dec 14th 2011

EMC backgrounds

S. Germani

- There is no absolute dominating background
 - Energy and angular (Barrel/Fwd) dependence
 - Main background is Rad-bhabha, but
 - Pairs dominate at low energies (1<MeV) in central barrel</p>
 - > Touschek-LER at high energy (>10 MeV) in bwd-barrel

IFR backgrounds

Rad-bhabha:

- Neutrons: rate is very high and dangerous for the Sipm
- γ/e^{\pm} : rates are high but shouldn't be a problem

Other background sources (Pairs and Touschek) are small compared with Radbhabha

2nd SuperB Collaboration meeting, MDI parallel session Dec 14th 2011

Summary and Outlook

Several Changes in the BRN code since last SuperB meeting

- FDIRC: Cherenkov photons and intrumentation
- Final Focus: Solenoidal field and Cryostat and super-conducting magnets
- Several background sources produced: Rad-bhabha, Pairs, Touschek

Backgrounds on the detector:

- SVT: Main background is Pairs
- DCH: Rad-bhabha and Pairs produce similar amounts of backgrounds, 1-2% occupancy each.
- FDICR: Main background is Rad-bhabha. Will increase shielding arounf photon-camera to reduce it.
- EMC: No absolute dominant background. Main is Rad-bhabha, Pairs (Touschek-LER) dominates for low (high) energy regions
- IFR: Rad-bhabha is main background. Neutron rate a little bit high

Rad-bhabha bg-frames production (I)

- Current final focus (FF) model in FullSim is very complete, it covers from -16m to 16m
 - Rad-bhabha simulation takes ~10min per event
 - Impossible to produce the rad-bhabha bg-frames request of 1M events in a reasonable time

Approach to the problem:

- The reason of the long FF model is to have a realistic estimation of neutron rates on the subsystems (FDIRC, IFR, EMC)
- FastSim doesn't have a good simulation for neutrons
- Propose to build reduced version of the FF: ±8mts and ±5mts
- Run a small fullsim production with the reduced versions of the FF
 - Compare background rates on different subsystems for the different FF models: nominal (±16mts) and reduced ones (±8mts and ±5mts)

If rates are similar \Rightarrow can use the reduced FF for the bg-frame production

Rad-bhabha bg-frames production (II)

Rad-bhabha bg-frames production (III)

- Summary of comparison of FF models:
 - Most of the subsystems see very similar rates for the different FF models
 - Only the IFR sees different rates. Can we leave with this? FastSim IFR experts yes
 - See link below for the reports full reports on this

- The reduced FF model (±5mts) is the only approach that the FullSim group can offer to generate the requested 1M Rad-bhabha events in a reasonable time
 - \Rightarrow The reduced FF model of ±5mts have a factor of 10 lower execution time per event w.r.t. the nominal FF model (±16mts)
- Nov. 2011 production:
 - Use the ±5mts FF model (Geometry_CIPE_V00-00-02_ShorterFF5mts)