Lab activities @ LIVE

2nd SuperB Collaboration Meeting
LNF 13 December 2011

G. Finocchiaro - LNF

Prototype 2

- 2.5m long prototype with 28 sense wires arranged in 8 layers
 - Goal: study DCH response from single clusters in a realistic environment, and serve as a test bench for the final FEE and for test of DCH trigger implementation
 - Prototype 2 integrated in the cosmic-ray tracking telescope system at LNF
 - Waveforms from all 28 cells now digitized

Prototype 2 (cont.)

- Only channels with at least 3 bins 5 sigma's above pedestal are presently written to disk
- Only events with at least 1 cell in proto2 and 2+2 hits in the MT's are written to disk
 - 40kB/event
 - rate ~0.27Hz (1000 evts/hour)

Sample waveforms

90%He-10%iC₄H₁₀ HV=1750V

Sample waveforms

Sample "baselinesubtracted" waveforms

Time of 1st cluster

Space-time relations

90%He-10%iC₄H₁₀ HV=1750V

External tracker extrapolation error larger than in the past

Effect being investigated, not understood so far

R vs t relation fitted with 5th – order Chebychev polynomial

Run DAQ/run00542 Event 000

Run DAQ/run00542 Event 001

Run DAQ/run00542 Event 002

Run DAQ/run00542 Event 003

Event DisplaysEvent Displays

Event DisplaysEvent Displays

Spatial resolution-preliminary

- Track fit program in proto2 still being implemented
- Given poor performance of external tracker, use correlation of cells in consecutive layers to have a sense of the spatial resolution

• The same space-time-relation is used for all cells – and is clearly not accurate (ξ not flat)

Spatial resolution-preliminary

- Track fit program in proto2 still being implemented
- Given poor performance of external tracker, use correlation of cells in consecutive layers to have a sense of the spatial resolution

reso = sigma* $\sqrt{3}/2^{190}\mu$ m

Proto2 data analysis - ontlook

- Track fit program in Proto2 is progressing
 - pattern recognition written and working OK
- Hopefully the space-time relations determined from the external tracker are a good enough starting point for autocalibrating the device. This will allow
 - measurement of tracking performances (efficiency, resolution)
 - analysis of dE/dx and cluster counting performances of cells actually associated to tracks → results based on the external tracking discussed in M.Piccolo's talk

Upgrade of cosmic-ray setup

- Only ~40cm out of the 2.5m length presently covered by the trigger counters
- Plan to extend coverage to 1.5m
 - work needed to upgrade scintillator counters already in the lab and equip them with good phototubes
- Plan to use 3 scintillators with suitable absorber thickness to select MIP cosmic tracks

- S1*S2*S3 will provide MIPS
- High $\beta \gamma$ tracks: see next slide

Beam test plans

- Two weeks of beam time requested and assigned starting from Jan. 30th 2012
- Detailed data taking plan still to be finalized. Idea is to scan at least:
 - three longitudinal positions (central, close to preamp. side, far from preamp. side)
 - different "theta" angles (impact on space-charge effects)
 - different phi angles
 - a few HV settings
 - a few gas mixtures (however, proto2 volume is ~60l → cannot afford too many mixture changes)
- And of course it is still possible to bring the prototype off-site (e.g., TRIUMF)

Rotating support for beam test

Mechanical design by E. Capitolo (LNF) almost complete

Detail of support for phi rotation