Overview of the TRIUMF beam test

Christopher Hearty

University of British Columbia/IPP
13-Dec-2011

Goal

- Test the particle ID performance of a full-length single-cell drift chamber prototype using a prototype amplifier.

Prototype

- 2.7 m long, single cell.
- $15 \mathrm{~mm} \times 15 \mathrm{~mm}$ square cell, 3:1 field/sense
- 80 micron gold-plated aluminum field and bias wires. 86 g tension.
- 25 micron gold-plated molybdenum sense wire. 27 g .
- Bias wires are adjusted to make the field map in the cell look like a large chamber.
- Five windows (25 micron aluminum), protected by mylar.
- Amplifier prototype produced by Jean-Pierre Martin (Montreal). Some data also collected with a commercial amplifier (Wenteq).

Positron drift lines from a wire

5

O Anode Wire

- Field Wires, bussed together and grounded
\otimes Bias Wires, bussed together and at +1320 Volts

Generally terminate the nonamplifier end by replacing this with a 390 ohm resistor

$$
\begin{aligned}
& \text { power consumption }=30 \mathrm{~mA} @ 3.5 \mathrm{~V} \\
& =100 \mathrm{~mW}
\end{aligned}
$$

University of Montreal

Operations

- We had control of the beam from Nov 15 - Dec 5, but we actually recorded data with JP1 amplifier only from Nov 28 Dec 3.
- Many start up problems.
- gas system leak
- HV problem on amplifier prototype
- low tension in a field wire
- Most shifts taken by four graduate students: Alexandre Beaulieu, Jean-Francois Caron, Sam DeJong, and Rocky So. Plus Mike Roney, and assistance from Wayne Faszer.
- two 8 -hour shifts per day, plus a long run over night.

Operations II

- Three different He:Iso gas mixtures. Gain $\sim 2 \times 10^{5}$.
- $80: 20$ sense $=2100 \mathrm{~V}$ bias $=1195 \mathrm{~V}$
- 90:10 sense $=1800 \mathrm{~V}$ bias $=2013 \mathrm{~V}$
- 95:5 sense $=1580 \mathrm{~V}$ bias $=898 \mathrm{~V}$

Time-of-Flight

- Two time-of-flight counters. $12.7 \times 12.7 \times 200 \mathrm{~mm}$ BC404 scintillator.
- Each scintillator viewed by two Burle micro-channel PMTs.
- Flight distance $=3.927 \mathrm{~m}$
- Upstream pmts operated at lower voltage and used a 20 db $100-500 \mathrm{MHz}$ bandwidth inverting amplifier.
- aging concerns
- PMT signals split:
- constant-fraction discriminator then TDC
- switched capacitor array

Trigger

- Trigger was a coincidence of the four PMTs. Upstream counter $\sim 1 \mathrm{kHz}$; downstream 10's of Hz; trigger $\sim 20 \mathrm{~Hz}$; DAQ $10-15 \mathrm{~Hz}$.
- A straight line passing between the scintillators would necessarily pass through the active chamber volume. Nevertheless, $\sim 40 \%$ of the events had no DCH activity.

- TOF distribution for events with and without chamber info:

Time of Flight in events with DCH

Time of Flight in events without DCH

- Shoulder at high end is consistent with scattering $\sim 90 \mathrm{~cm}$ below the chamber.

Data Acquisition

- TRIUMF provided a MIDAS-based data acquisition system:
- CAENV1190b TDC
- CAEN V1729 4-channel switched capacitor array (two units)
- one of these was noisy, which affected one of the TOF PMTs.
- Temperature and pressure
- although the temperature is probably useless

DCH waveform

2560 bins, 0.5 ns per bin

PMT0 Downstream PMTs, no amplifier

PMT2 Downstream PMTs, with amplifier

PMT 1

PMT 3

Time of flight calibration

- Need two constants to convert TDC counts into flight times.
- On the last day, took data with different flight distances, with and without amplifiers on the upstream scintillator counter, no drift chamber. Use electron data so that β is known.
- Results consistent with 98 ps / count.
- Muon and pion peaks indicate momentum $137 \pm 2 \mathrm{MeV} / \mathrm{c}$ for nominal $140 \mathrm{MeV} / \mathrm{c}$ beam.
- Flight time resolution $\sim 200 \mathrm{ps}$ using CFD output / TDC with no walk corrections.
- Could possibly do better analyzing the recorded waveforms, although the noisy SCA makes this problematic.

Flight Time 3.927m $140 \mathrm{MeV} / \mathrm{c}$ amplifiers

Flight Time 3.927m $140 \mathrm{MeV} / \mathrm{c}$ no amplifiers

Flight Time 2.888m $140 \mathrm{MeV} / \mathrm{c}$ amplifiers

Flight Time 1.784m $140 \mathrm{MeV} / \mathrm{c}$ no amplifiers

Data

- Three different gas mixtures
- four locations along the wire
- two dip angles (0 and 45 degrees)
- momentum from $130 \mathrm{MeV} / \mathrm{c}-330 \mathrm{MeV} / \mathrm{c}$ nominal
- Tried at $400 \mathrm{MeV} / \mathrm{c}$, where both muons and pions are minimum ionizing, but we could get nothing but offmomentum protons.
- Few other cases (non-terminated, 10 m RG174 cable instead of the 13 m RG8 cable used otherwise.)

Data

- Google Docs summary of all runs:
- https: / / docs.google.com/spreadsheet/ ccc? key=0AkOokiozZns7dDhuZURBaTZ2NlJPcUxSTXhhLXN CSHc \#gid=0
- Rocky has made ntuples of all runs.

Lessons for next time, if there is a next time.

- Improve the trigger to reject empty events by adding a third counter close to chamber
- Interlock DCH HV to DAQ (one trip during run).
- Interlock or alarm M11 vacuum valve. Spontaneously closed three times.
- Measure temperature of the chamber, instead of a random power supply near by.
- Get rid of PMT amplifiers; better collimators upstream of the first counter.
- Get SCA repaired
- M11 is available in 2012, but not after that.

