Cluster Counting in Helium Based Gases

By Sam Dejong

Outline

- Introduction
 - Ionization
 - Cluster counting
 - Helium
- UVic Test Chamber
- Sample Traces in various mixtures
- Cluster Counting algorithm
 - Example
 - Choosing a threshold
- TRIUMF Testbeam
 SuperB Collaboration Meeting

Ionization

- Charged particle deposits energy via ionization
- Ionization is a Poisson process
- Ejected electron ionizes gas around it forming clusters
- Counting primary ionization allows for improved particle identification, by reducing the spread around the mean

Cluster counting

- Need to single out structures from arrival of electrons from the same structure
- Pulses from different clusters must not overlap in time
- Time between pulses from same cluster must be small to prevent over counting
- Incompatible requirements, must use optimal conditions

Helium

- High ionization potential
 - Fewer clusters, so larger gap between them
- Low drift velocity
 - Amplifies cluster seperation
- High ion mobility
 - Clear up space charge region quickly

UVic Test chamber

- 2.7m long copper
 2cm diameter tube
- Ran with various Helium based gas mixtures:
 - 70% He, 30%Isobutane
 - 80% He, 20%Isobutane
 - 90% He, 10%Isobutane

Time Distribution

- Pair of scintillators used to trigger on chamber.
- Time difference between scintillator and drift chamber is plotted here
- Measuring cosmic rays

Sample traces

- Garfield is still in the process of being tuned.
- Using transfer function:

$$1 \times 10^{-13} \left(\frac{6t}{0.01}\right)^6 e^{\frac{6t}{0.01}}$$

- Gaussian noise has been applied.
- Garfield looks superficially like real signals, but is still not quite finished.
- May result in few clusters detected in algorithm

Cluster Counting Algorithm

Smoothing of noisy data:

$$v_i^{Smooth} = \frac{(v_{i-1} + v_i + v_{i+1})}{3}$$

 Counting Clusters (Algorithm from Marcello Piccolo in previous meeting)

$$a_i = v_i - \frac{(v_{i-1} + v_{i-2} + v_{i-3} + v_{i-4} + v_{i-5})}{5}$$

When value is past some threshold, a cluster is detected

Smoothing

Algorithm Applied

Problems

Sensitive to Threshold value

Threshold of 120

Integrated signal vs Clusters detected

 The integrated signal was plotted against the number of clusters detected by the algorithm for different threshold values

 Events with integrals between 1e⁵ and 1.2e⁵ are plotted

Comments on previous plots

- Clear correlation between integral and no. of clusters produced by algorithm
- Qualitatively, correlation is described by Garfield, but there are fewer clusters in the Garfield data – still trying to understand the differences
- Garfield studies on other gas mixtures in progress

TRIUMF testbeam

- A prototype detector was placed in a beam of pions, muons, and electrons at TRIUMF
- Testbeam ran from Nov 25 to Dec 5 of this year
- Gas mixtures used (Helium/Isobutane):
 - -80/20
 - -90/10
 - 95/5

Future Work

- Improve Preamp transfer function and noise simulation in Garfield
- A lead brick and scintillator will be placed below chamber to trigger on harder cosmic rays
- Algorithm explored will be applied to TRIUMF testbeam data
- Will use UVic chamber to study other potential gas mixtures
- Develop other counting algorithms