# H8500 Cross Talk Studies 

Doug Roberts Ellie Twedt
University of Maryland

## Overview

- We have continued our studies of cross-talk in the H8500.
- Want to try to understand the nature of cross-talk:
- Charge sharing?
- Position dependence?
- Overall size?
- Can it be used to improve position resolution or is it just bad?
- Need to get some handle on this effect and put into simulation for CRT prototype


## Scan Output

Pixel 29 vs. $x$


Older scan showing response on pads vs. X-position.

## Cross-Talk Pulses

## Pulse on target pad and neighbor pad



## Pulse on target pad and neighbor pad



Pulse on target pad and neighbor pad


## Pulse on target pad and neighbor pad



Waveform images of pulses when we see cross-talk near the boundary between two pads

## Correlation of Charge on Two Neighboring Pads



Scan in X near pad boundary

## Ratio of Single Charge to Sum of Charge on Two Pads

## Scan in X-Direction

Ratio of pad 45 charge to sum of pad 45 and 46 charge


Scan in Y-Direction
Ratio of pad 44 charge to sum of pad 44 and 52 charge


## Charge Ration vs. X Position

## Charge Ratio vs Laser Position



Effect turns on ~1 mm from boundary or pixels. Only see this in x-direction

## Position Resolution in X



## Position Resolution in Y



Slightly better than in X. All other things being equal, would be better to have tube oriented with better Y resolution (oriented with connectors
vertical).

## Summary

- Cross-talk does not appear to be very useful for position resolution improvement.
- Size of effect is basically independent of location once you are close to the boundary
- Cross-talk is at the >20\% level near the boundary
- Pulses are probably too small to be useful? Depends on electronics.
- There may be a slight preference for tube orientation since we would prefer to have better position resolution in $Y$, but this is a small effect.

