

PROPOSAL FOR FTCS & ECS

ECS

FCTS requirements

- Synchronizing the experiment with the machine.
- Delivering and buffering the reference clock (56 MHz) to the experiment.
- Dealing with the raw L1 trigger decision.
- Throttling the latter and tagging it with respect to the machine clock and to the slowest divided clock.
- Permitting the partitioning of the system into independent subsystems or groups of subsystems.
- Generating programmable local trigger for calibration and commissioning.
- Generating different commands (calibration pulse, reset, BxID and event ID).
- Managing the stack of IP addresses for PC farm.
- Keeping trace of all event-linked data to put in the event readout

Overall system achitecture

FCTS Architecture

FCTS connections

- Throttle:
 - 1. Front end electronics on detector: Bi-directional rad-hard link (~325links).
 - 2. Read Out Module: dedicated link (~50), ethernet link by UDP protocol (~1). **TEST and choice have to be done in coordination with Bologna group.**
 - 3. Slow throttle PC-farm: Ethernet link (~1).
- Clock and trigger command distribution.
 - Bi-directional rad-hard link.
- Clock machine input: Dedicated link (must be defined).
- Trigger link: Dedicated link (must be defined).

FCTS uTCA architecture

FCTM Board

AMC mezzanine board (CCPM development)

D.Charlet

Control & distribution module

DE L'ACCÉLÉRATEUR

Tongue 1: Off the shelf

industrial board.

Tongue 2 : CCPM

board

D.Charlet

Distribution & trottle

Those 2 functionalities must be integrated in the same board

Link modeling and simulation have to be performed for latency evaluation

- One FCTS uTCA crate cant manage all links (~325 links)
 - 1. Dedicated crate for switch and throttle links.
 - 2. Further crates
 - 3. uTCA for physics 2u size.

Ethernet development

- Mandatory for ECS and FCTS.
 - Full TCP/IP and UDP protocol have been tested.
 - Custom uCLinux have been implemented.
 - Tested on Cyclone III Neek design kit.
 - Performance improvement is on way (increase niosII frequency, hardware check sum, memory access.......

FCTS Conclusion

- We would like to use uTCA standard for FCTS system:
 - AMC board standardization: throttle, switch, SPECS master (only custom transceivers mezzanines).
 - Industrial board for "crate controller" (MCH tong 1).
 - FCTS board already developed (CCPM development)
 - Consequence => CONTROL LINK SERIALIZERS MUST BE IMPLEMENTED IN FPGA (due to the uTCA form factor).

Bi-directional link on front-end board electronics (control & throttle) make the FCTS system much more complex.

Decision concerning the link implementation must be taken soon. (FCTS implementation is dependent on this decision and delays the TDR writing).

ECS requirement

- Configuration system for individual boards located on the detector or crate located in the cavern.
 - Located in radiation sensitive environment, up to 20KRads.
 - Long distance link, up to 100m.
 - Multi configuration (multi-drop bus, point to point).
 - Multi standard interfaces (JTAG, I2C, parallel bus, ctrl I/O).

A Serial Protocol for Experiment Control System SPECS

Ethernet SPECS master

ECS uTCA architecture

ECS Conclusion

- ECS board development.
 - All ECS slaves' functionalities cover the sub-detectors' requirements, confirmed during the CERN meeting in November.
 - We feel like asking CAEN to produce and maintain the system (in long term).
 - ECS TDR is on its way.

SuperB SPECS slave implementation

FPGA ProASIC3L from ACTEL.

Triple voting register.

Transfer rate: ~ 14Mbits/s

Address: Local address switch.

Broadcast address capability.

On board clock: Crystal resonator

Programmable clock for SPECS read back:

Long distance capability: 100m cat6 cable

User Serial EEPROM: 65Kbits capacity

JTAG bus, I2C bus, SPI Bus

58mm

SPECS slave functions

Kontron carrier board AT8404

Gigabit Ethernet

Storage Interconnect

AMC Fabric P2P Interconnect

AMC/RTM Extension Ports

Possible solution for off-detector

area

Hardware

Based on Ethernet SPECS master.

- SM connector.
 Parallel bus, Configurable.
 I/O ligne, I2C bus, SPI bus.
 JTAG bus.
- 32MBytes DDR2 memory.
- 16MBytes Flash memory.

Firmware

- Ethernet reconfiguration.
- Cyclone III EP3C25F324.
- Base on NIOS II processor.

Soft

- OS µclinux.
- DIM server
- SPECS library.
- SPECS users library.

Throttle Switch Module

