## POWER SUPPLY

A.Giachero
C.Gotti
M.Maino
G.Pessina

INFN Milano Bicocca

## Questionnaire

We started to send, recently, a questionnaire for trying to collect, for the moment, a minimal set of information.

People that received it are working with its compilation.

At the moment we received the feedback from 2 groups over the 5 to which it was sent.

| DC/DC power Supply |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | V1 | V2 | V3 | V4 | V5 | Comment, <br> if any |
| Required Voltage level (V) |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| Total power (W) |  |  |  |  |  |  |
| Number of input <br> connections/cables |  |  |  |  |  |  |
| Current absorption per <br> input cable |  |  |  |  |  |  |
| Number of output <br> connections/cables |  |  |  |  |  |  |
| Current absorption per <br> ouput cable |  |  |  |  |  |  |
| Purpose (pre-regulation <br> followed by linear <br> regulator, final value, etc.) |  |  |  |  |  |  |
| Power supply location <br> (detector area, outside <br> detecotr area) |  |  |  |  |  |  |
| Maximum ripple (mV), or |  |  |  |  |  |  |
| Maximum ripple (\%) |  |  |  |  |  |  |


| HV for detectors bias |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | V1 | V2 | V3 | V4 | V5 | Comment, <br> if any |
| Required Voltage level (V) |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| Total power (W) |  |  |  |  |  |  |
| Number of input <br> connections/cables |  |  |  |  |  |  |
| Number of output <br> connections/cables |  |  |  |  |  |  |
| Power supply location <br> (detector area, outside <br> detecotr area) |  |  |  |  |  |  |
| pp noise (mV), or |  |  |  |  |  |  |
| pp noise (\%) |  |  |  |  |  |  |


| IFR BARREL |  |  |  |
| :---: | :---: | :---: | :---: |
| DC/DC power Supply |  |  |  |
|  | V1 | V2 | Comment, if any |
| Required Voltage level (V) | +5V | -5V |  |
| Total power (W) | 1200 | 1200 | nominal power dissipated by the analog front end |
| Total power (W) | 1728 | 1728 | MAX power dissipated by the analog front end; safety factor 1,5X |
| Number of input connections/cables |  |  | FOR THE DESIGNER TO CHOOSE |
| Current absorption per input cable |  |  | FOR THE DESIGNER TO CHOOSE |
| Number of output connections/cables | 54 (+54 GND) | 54 (+54 GND) | assuming one channel supplies all module of a layer |
| Current absorption per ouput cable | 7,5 A (safety factor of $\geq 1,5$ already included | 7,5 A (safety factor of $\geq 1,5$ already included) | assuming one channel supplies all module of a layer |
| Number of output connections/cables | 384 (+384 GND) | 384 (+384 GND) | assuming one channel supplies just ONE module of a layer |
| Current absorption per ouput cable | 0,9 A (safety factor o $\geq 1,5$ already included | 0,9 A (safety factor of $\geq 1,5$ already included) | assuming one channel supplies just ONE module of a layer |
| Purpose (pre-regulation followed by linear regulator, final value, etc.) | final value | final value |  |
| Power supply location (detector area, outside detecotr area) | $\begin{gathered} \text { possibly, detector } \\ \text { area } \end{gathered}$ | $\begin{gathered} \text { possibly, detector } \\ \text { area } \end{gathered}$ |  |
| Maximum ripple (mV), or | $\begin{gathered} \text { 2mV r.m.s. } 10 \mathrm{mV} \\ \text { pk/pk } \end{gathered}$ | $\begin{gathered} \text { 2mV r.m.s. } 10 \mathrm{mV} \\ \text { pk/pk } \\ \hline \end{gathered}$ |  |
| Maximum ripple (\%) |  |  |  |
| HV for detectors bias |  |  |  |
|  | V1 | V2 | Comment, if any |
| Required Voltage level (V) | 80 | N.A. |  |
| Total power (W) | 17 |  | nominal power dissipated by SiPMs inside the IRON |
| Total power (W) | 196,608 |  | MAX power dissipated by SiPMs inside the IRON safety factor 10X |
| Number of input connections/cables |  |  | FOR THE DESIGNER TO CHOOSE |
| Number of output connections/cables | 384 |  | assuming one HV channel supplies just ONE module of a layer |
| Current absorption per ouput cable (mA) | 6,4 |  | assuming one channel supplies all module of a layer. (safety factor of $\geq 10$ already included) |
| Max power rating for the HV channel (W) | 0,512 |  | assuming one channel supplies all module of a layer. (safety factor of $\geq 10$ already included) |
| Power supply location (detector area, outside detecotr area) | possibly, detector area |  |  |
| pp noise (mV), or | $\begin{gathered} 2 \mathrm{mV} \text { r.m.s. } 10 \mathrm{mV} \\ \mathrm{pk} / \mathrm{pk} \\ \hline \end{gathered}$ |  |  |
| pp noise (\%) |  |  |  |


| IFR ENDCAPS |  |  |  |
| :---: | :---: | :---: | :---: |
| DC/DC power Supply |  |  |  |
|  | V1 | V2 | Comment, if any |
| Required Voltage level (V) | + 5 V | -5V |  |
| Total power (W) | 900 | 900 | nominal power dissipated by the analog front end |
| Total power (W) | 1260 | 1260 | MAX power dissipated by the analog front end; safety factor 1,5X |
| Number of input connections/cables |  |  | FOR THE DESIGNER TO CHOOSE |
| Current absorption per input cable |  |  | FOR THE DESIGNER TO CHOOSE |
|  |  |  |  |
|  |  |  |  |
| Number of output connections/cables | 72 (+72 GND) | 72 (+72 GND) | assuming one channel supplies just ONE module of a layer |
| Current absorption per ouput cable | 3,5A (safety factor of z1,5 already included) | 3,5A (safety factor of $\approx 1,5$ already included) | assuming one channel supplies just ONE module of a layer |
| Purpose (pre-regulation followed by linear regulator, final value, etc.) | final value | final value |  |
| Power supply location (detector area, outside detecotr area) | $\begin{gathered} \text { possibly, detector } \\ \text { area } \end{gathered}$ | $\begin{gathered} \text { possibly, detector } \\ \text { area } \end{gathered}$ |  |
| Maximum ripple (mV), or | $\begin{gathered} 2 \mathrm{mV} \text { r.m.s. } 10 \mathrm{mV} \\ \mathrm{pk} / \mathrm{pk} \\ \hline \end{gathered}$ | $\underset{\substack{2 \mathrm{mV} \text { r.m.s. } 10 \mathrm{mV} \\ \mathrm{pk} / \mathrm{pk}}}{ }$ |  |
| Maximum ripple (\%) |  |  |  |
| HV for detectors bias |  |  |  |
|  | V1 | V2 | Comment, if any |
| Required Voltage level (V) | 80 | N.A. |  |
| Total power (W) | 12 |  | nominal power dissipated by SiPMs inside the IRON |
| Total power (W) | 135,936 |  | MAX power dissipated by SiPMs inside the IRON safety factor 10X |
| Number of input connections/cables |  |  | FOR THE DESIGNER TO CHOOSE |
| Number of output connections/cables | 72 |  | assuming one HV channel supplies just ONE module of a layer |
| Current absorption per ouput cable (mA) | 23,6 |  | assuming one channel supplies all module of a layer. (safety factor of $\geq 10$ already included) |
| Max power rating for the HV channel (W) | 1,888 |  | assuming one channel supplies all module of a layer. (safety factor of $\geq 10$ already included) |
| Power supply location (detector area, outside detecotr area) | possibly, detector area |  |  |
| pp noise (mV), or | $\begin{gathered} 2 \mathrm{mV} \text { r.m.s. } 10 \mathrm{mV} \\ \mathrm{pk} / \mathrm{pk} \\ \hline \end{gathered}$ |  |  |
| pp noise (\%) |  |  |  |


| DC/DC power Supply |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | V1 | V2 | V3 | V4 | V5 | Comment, if any |
| Required Voltage level (V) | 3,3 | 3,3 | 1,2 |  |  |  |
|  |  |  |  |  |  |  |
| Total power (W) | 726 | 792 | 80 |  |  |  |
| Number of input connections/cables | 208 | 240 | 16 |  |  |  |
| Current absorption per input cable | about 1 A | about 1A | about 1 A |  |  |  |
| Number of output connections/cables |  |  |  |  |  |  |
| Current absorption per ouput cable |  |  |  |  |  |  |
| Purpose (pre-regulation followed by linear regulator, final value, etc.) | tbd | tbd | tbd |  |  |  |
| Power supply location (detector area, outside detecotr area) | just outside | just outside | just outside |  |  |  |
| Maximum ripple (mV), or |  |  |  |  |  |  |
| Maximum ripple (\%) |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| HV for detectors bias |  |  |  |  |  |  |
|  | V1 | V2 | V3 | V4 | V5 | Comment, if any |
| Required Voltage level (V) | 40 |  |  |  |  |  |
|  |  |  |  |  |  |  |
| Total power (W) | negligible |  |  |  |  |  |
| Number of input connections/cables | 208 |  |  |  |  |  |
| Number of output connections/cables |  |  |  |  |  |  |
| Power supply location (detector area, outside detecotr area) | just outside |  |  |  |  |  |
| pp noise (mV), or |  |  |  |  |  |  |
| pp noise (\%) |  |  |  |  |  |  |

Strip
pixel
link conn
g.pessina

## Possible Configuration (1)



No sources in the detector area: input cables=output cables.

$\square$
$\square$
$\square$
$\square$
$\square$
$\square$
$\square$

## Possible Configuration (2)



## Possible Configuration (3)



## Possible Configuration (4)

 present in the detector area: input and output cables could differ in number and Output Cables $\geq$ Input Cables.

Output cables are considered those present at the DC/DC outputs of the Radiation


## As far I now Caen and Wiener have experience in this field



## An example of a Custom solution



## mV )...




Fig. 6. Measurement of the output peak-to-peak noise with a load current $I_{L O A D}=4.3 \mathrm{~A}$ (Tektronix MSO $4032,350 \mathrm{MHz}, 2.5 \mathrm{GS} / \mathrm{s}$ )

[^0]
[^0]:    $\square$

