SuperB EW Physics Update

Michael Roney

University of Victoria

15 Dec 2011 LNF

Outline

Quick reminder of the EW programme

• Software tool studies: ZFITTER calculation of ALR vs simple calculation

• Comments on cross section: what impact does beam polarisation have on the cross sections

EW programme reminders...

Polarised e- beam yields product of the neutral axial-vector coupling of the electron and vector coupling of the final-state fermion via $Z-\gamma$ interference:

$$A_{LR} = \frac{4}{\sqrt{2}} \left(\frac{G_F s}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle Pol \rangle$$

$$\langle Pol \rangle = 0.5 \left\{ \left(\frac{N_R^{e-} - N_L^{e-}}{N_R^{e-} + N_L^{e-}} \right)_R - \left(\frac{N_R^{e-} - N_L^{e-}}{N_R^{e-} + N_L^{e-}} \right)_L \right\}$$

$$g_A^e = T_3^e = 1/2$$
 $g_V^f = T_3^f - 2Q_f \sin^2 \theta_W$

EW programme ...

- •A_{LR} programme -> rich precision probe of the vector coupling of e, μ , τ , c, b all within the same experiment
- •Absolute vector coupling gives measure of $\sin^2\theta_W$ requires absolute polarisation and electron axial-vector coupling (g_A^e)
- •Relative vector couplings are given by ratios of A_{LR} and can be expected to be statistics limited as polarisation and $g_A{}^e$ cancel in the ratios

Absolute vector couplings: $sin^2\theta_W$

- •Absolute vector coupling gives measure of $\sin^2\theta_W$; requires absolute polarisation and electron axial-vector coupling (g_A^e)
- •Beam polarisation with Compton Polarimeter and tau-polarisation FB asymmetry to ~0.5% (see Sept 2011 presentation)
- • g_A^e : can either assume $SM \frac{1}{2}$; use LEP measurement and assume it is the same at 10.58GeV; or can check it with $A_{FB}^{\mu} \sim g_A^e g_A^{\mu}$ assuming Lept. Univ. (In principle $A_{FB}^{e} \sim g_A^e g_A^e$ gives this w/o assuming Lept. Univ. but A_{FB}^e dominated by QED)

A µ-pair selection in BaBar

- Efficiency = 53.4%
- Purity = 99.6%
- Projected no. of
 selected mu-pair events
 at SuperB for 75/ab is
 45.6 billion
- For $46x10^9$ stat error on for <P>= 100% is $4.7x10^{-6}$

$e^+e^- \to \mu^+\mu^- @ \sqrt{s} = 10.58 GeV$

Diagrams	Cross Section (nb)	$\mathbf{A}_{\mathbf{FB}}$	$\begin{array}{c} A_{LR} \\ (\text{Pol} = 100\%) \end{array}$		
$ Z+\gamma ^2$	1.01	0.0028	-0.00051		

$$\sigma_{ALR} = 6 \times 10^{-6} \rightarrow \sigma_{(sin2\theta eff)} = 0.0002$$

cf SLC A_{LR} $\sigma_{(sin2\thetaeff)}$ =0.00026 relative stat. error of 1% (pol=80%) require <~0.5% systematic error on beam polarisation

SM expectation & LEP Measurement of g_V^b

• SM: -0.34372 +0.00049-.00028

• A_{FB}^{b} : -0.3220±0.0077

• with 0.5% polarization systematic and 0.3% stat error, SuperB can have an error of ±0.0021

on-shell scheme...

$$g_V^f = \sqrt{\rho_f} \left(T_3^f - 2Q_f \kappa_f \sin^2 \theta_W \right)$$
$$g_V^f = \sqrt{\rho_f} T_3^f$$

on - shell scheme $\sin^2 \theta_W$ in terms, to all orders, of pole masses

$$\cos^{2} \theta_{W} = m_{W}^{2} / m_{Z}^{2}$$

$$\rho_{f} = 1 + \Delta \rho_{se} + \Delta \rho_{f}$$

$$\kappa_{f} = 1 + \Delta \kappa_{se} + \Delta \kappa_{f}$$

Higher order corrections

to gauge boson propagators

$$\Delta \rho_{se} = \frac{3G_F m_W^2}{8\sqrt{2}\pi^2} \left[\frac{m_t^2}{m_W^2} - \frac{\sin^2\theta_W}{\cos^2\theta_W} \left(\ln\left(\frac{m_H^2}{m_W^2}\right) - \frac{5}{6} \right) + \ldots \right]; \qquad \Delta \rho_{f\neq b} \approx 0; \ \Delta \rho_b = -\frac{G_F m_t^2}{2\sqrt{2}\pi^2} + \ldots$$

$$\Delta \kappa_{se} = \frac{3G_F m_W^2}{8\sqrt{2}\pi^2} \left[\frac{m_t^2}{m_W^2} \frac{\cos^2 \theta_W}{\sin^2 \theta_W} - \frac{10}{9} \left(\ln \left(\frac{m_H^2}{m_W^2} \right) - \frac{5}{6} \right) + \ldots \right]; \ \Delta \kappa_{f \neq b} \approx 0; \ \Delta \kappa_b = -\frac{G_F m_t^2}{4\sqrt{2}\pi^2} + \ldots$$

on-shell scheme...

$$g_V^f = \sqrt{\rho_f} \left(T_3^f - 2Q_f \kappa_f \sin^2 \theta_W \right)$$
$$g_V^f = \sqrt{\rho_f} T_3^f$$

on - shell scheme $\sin^2 \theta_W$ in terms, to all orders, of pole masses

$$\cos^{2} \theta_{W} = m_{W}^{2} / m_{Z}^{2}$$
$$\rho_{f} = 1 + \Delta \rho_{se} + \Delta \rho_{f}$$
$$\kappa_{f} = 1 + \Delta \kappa_{se} + \Delta \kappa_{f}$$

$$\Delta \rho_{se} = \frac{3G_F m_W^2}{8\sqrt{2}\pi^2} \left[\frac{m_t^2}{m_W^2} - \frac{\sin^2\theta_W}{\cos^2\theta_W} \left(\ln\left(\frac{m_H^2}{m_W^2}\right) - \frac{5}{6} \right) + \ldots \right]; \qquad \Delta \rho_{f\neq b} \approx 0; \ \Delta \rho_b = -\frac{G_F m_t^2}{2\sqrt{2}\pi^2} + \ldots$$

$$\Delta \kappa_{se} = \frac{3G_F m_W^2}{8\sqrt{2}\pi^2} \left[\frac{m_t^2}{m_W^2} \frac{\cos^2 \theta_W}{\sin^2 \theta_W} - \frac{10}{9} \left(\ln \left(\frac{m_H^2}{m_W^2} \right) - \frac{5}{6} \right) + \ldots \right]; \ \Delta \kappa_{f \neq b} \approx 0; \ \Delta \kappa_b = -\frac{G_F m_t^2}{4\sqrt{2}\pi^2} + \ldots$$

Higher order corrections to vertex in e+e- -> b-pair

ZFitter vs simple tree A_{LR}

With mass measurements of Z and top, Higgs we have SM values for the vector couplings and rigorous predictions of the vector couplings:

at 10.58GeV	Zfitter	Zfitter (Weak Rad Corr off)	Simple Analytic no Rad Cor
muon	-0.00050	-0.00086	-0.00077
charm	-0.00478	-0.0052	-0.00547
beauty	-0.01936	-0.0200	-0.0194

Relative vector couplings

With mass measurements of W, Z and top, we have SM values for the vector couplings and rigorous predictions of the ratios of the vector couplings:

$$g_V^{f \neq b} / g_V^{\mu} = (T_3^f - 2Q_f \sin^2 \theta_W) / (-0.5 + 2\sin^2 \theta_W)$$

Relative vector couplings

take ratios of μ,τ,c,b A_{LR} so that of the electron cancels polarisation systematic errors and the electron axial-vector coupling: stat. error dominated

	SM 105G V	LEP	SuperB
	(Mh=125GeV)		error
$g_V^\mu/g_V^ au$	1	0.997 +/- 0.068	~2% from tau stats
g_V^c / g_V^{lepton}	5.223 +/-	-4.991 +/- 0.074	~1% muon stats +/-0.05
g_V^b / g_V^{lepton}	9.357 +/-	8.58+/- 0.16	~1% from mu stats +/- 0.08

Cross-sections with polarised beams

• From Gudrid Moortgat-Pick (desy-10-242)

$$\begin{split} \sigma_{P_{e^{-}}P_{e^{+}}} &= \frac{1 + P_{e^{-}}}{2} \frac{1 - P_{e^{+}}}{2} \, \sigma_{\mathrm{RL}} + \frac{1 - P_{e^{-}}}{2} \frac{1 + P_{e^{+}}}{2} \, \sigma_{\mathrm{LR}} \\ &= (1 - P_{e^{-}}P_{e^{+}}) \, \frac{\sigma_{\mathrm{RL}} + \sigma_{\mathrm{LR}}}{4} \, \left[1 - \frac{P_{e^{-}} - P_{e^{+}}}{1 - P_{e^{+}}P_{e^{-}}} \, \frac{\sigma_{\mathrm{LR}} - \sigma_{\mathrm{RL}}}{\sigma_{\mathrm{LR}} + \sigma_{\mathrm{RL}}} \right] \\ &= (1 - P_{e^{+}}P_{e^{-}}) \, \sigma_{0} \, \left[1 - P_{\mathrm{eff}} \, A_{\mathrm{LR}} \right], \end{split}$$

the unpolarized cross section: $\sigma_0 = \frac{\sigma_{\rm RL} + \sigma_{\rm LR}}{4}$

the left-right asymmetry: $A_{LR} = \frac{\sigma_{LR} - \sigma_{RL}}{\sigma_{LR} + \sigma_{RL}}$

and the effective polarization: $P_{\text{eff}} = \frac{P_{e^-} - P_{e^+}}{1 - P_{e^+} P_{e^-}}$

Polarisation of one beam has ~no impact on cross sections

Summary

• We have a very rich EW programme that gives unprecedented precision measurements of the vector coupling via A_{LR} –for mu, tau, charm and b fermions – the best place for b's

 Ratio of vector couplings are statistics limited errors – and polarization value will impact this

BACKUP SLIDES

$$P_{z'}^{(\tau-)}(\theta, P_e) = -\frac{8G_F s}{4\sqrt{2}\pi\alpha} \operatorname{Re} \left\{ \frac{g_V^l - Q_b g_V^b Y_{1S,2S,3S}(s)}{1 + Q_b^2 Y_{1S,2S,3S}(s)} \right\} \left(g_A^{\tau} \frac{|\vec{p}|}{p^0} + 2g_A^e \frac{\cos\theta}{1 + \cos^2\theta} \right) + P_e \frac{\cos\theta}{1 + \cos^2\theta}$$

- Dominant term is the polarization forwardbackward asymmetry whose coefficient is the beam polarization ->Oscar's slides from Elba
- Measure tau polarization as a function of θ for the separately tagged beam polarization states
- Because it's a forward-backward asymmetry it doesn't use information we'd want to use for new physics studies

- Advantages:
 - Measures beam polarization at the IP: biggest uncertainty in Compton polarimeter measurement is likely the uncertainty in the transport of the polarization from the polarimeter to the IP.
 - It automatically incorporates a luminosity-weighted polarization measurement
 - If positron beam has stray polarization, it's effect is automatically included
- 0.5% systematic error on P_e from tau FB polarization asymmetry can be obtained using only pion decays (0.25% with other modes)
- to get to 1%, we'll need 144fb⁻¹

- BaBar selection was not optimized for polarisation and would expect more efficient use of data
- See no reason why the tau polarisation forwardbackward asymmetry can't be used as a beam polarimeter at SuperB
- At a minimum, it would provide a cross check of the Compton polarimeter measurement
- At best, it may provide the absolute beam polarisation measurement and Compton polarimeter provides time dependence and a cross check

- OPAL tau->pi nu <u>Eur.Phys.J. C21 (2001) 1-21</u>
- Events selected using vetoes against multihadron, dimuon, elec-pair or 2-photon events non-tau background (0.2%)
- Nsignal=22526
- Purity=0.74
 - main backgrounds: rho(16%);mu(5%);a1(2%)

$$\frac{8}{3}A_{POL}^{FB}$$
 at OPAL plays role of P_{e} at SuperB

Most systematic errors cancel for this FB quantity

Tau Polarisation as Beam Polarimeter Systematic errors expressed in 0.01 units:

	$\Delta \langle P_{\tau} \rangle$ and $\Delta A_{\rm pol}^{\rm FB}$											
	e		μ		π		ρ		a_1		Global fit	
Momentum scale/resolution	0.4	0.2	2.1	0.1	0.8	0.1	0.3	0.1	0.4	0.2	0.24	0.13
ECAL scale/resolution	3.2	0.1	0.2	0.1	0.2	_	1.1	0.2	0.3	0.1	0.17	0.11
HCAL/MUON modelling		_	1.1	0.1	0.5	0.1	_	_	_	_	0.13	0.05
dE/dx errors	0.6	0.1	0.3	0.1	0.3	0.1	0.1	0.1	0.3	0.1	0.12	0.08
Shower modelling in ECAL	ower modelling in ECAL 0.6		0.2	0.1	0.4	0.1	0.5	0.2	0.4	0.1	0.25	0.10
Branching ratios		_	0.1	_	0.2	_	0.2	_	0.2	0.1	0.11	0.02
$\tau \rightarrow a_1 \nu_{\tau}$ modelling		_	_	_	_ <	- }	0.4	_	0.5	0.1	0.22	0.02
$\tau \to 3\pi \ge 1\pi^0 \nu_{\tau}$ modelling	_	_	_	_	_	_	_	_	1.2	0.1	0.11	0.04
A_{FB}	_	0.2	_	_	_	_	_	_	_	_	0.03	0.02
Decay radiation	_	_	_	_	_	_	_	_	0.1	_	0.01	0.01
Monte Carlo statistics	0.7	0.2	0.8	0.3	0.3	0.1	0.3	0.1	0.8	0.2	0.22	0.10
total	3.4	0.4	2.6	0.4	1.2	0.2	1.3	0.3	1.7	0.3	0.55	0.25

Pion systematic error is smallest = 0.002 8/3 factor→translates into 0.005 P_e error

	$\tau \rightarrow e \nu_e \nu_\tau$	$\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$	$\tau \rightarrow \pi \nu_{\tau}$	$\tau \rightarrow \rho \nu_{\tau}$	$\tau \rightarrow a_1 \nu_{\tau}$
Sample size	44,083	41,291	30,440	67,682	22,161
Efficiency	92%	87%	75%	73%	77%
Background	4.6%	3.3%	26%	29%	25%
$\langle P_{\tau} \rangle$ (%)	-18.7 ± 2.5	-16.3 ± 2.7	-13.8 ± 1.2	-13.3 ± 1.1	-11.6 ± 2.8
A_{pol}^{FB} (%)	-8.9 ± 2.6	-10.6 ± 2.8	-11.5 ± 1.3	-10.6 ± 1.1	-7.1 ± 2.8

Statistical error is 0.013 for 22526 $\tau \rightarrow \pi \nu$ signal events

translates into error of 0.035 on P_e To reach 0.005 error need 1.1M events

- BaBar tau->pi nu selection from Phys.Rev.Lett. 105 051602 (2010)
- Tag with 3-prong, suppressed non-tau background and trigger
 efficiency not an issue
- Luminosity=467fb⁻¹
- Nsignal=288,400
- Purity=0.79

Seems ~ 3.6 ab⁻¹ is sufficient to get to 0.005 if only pions used

Additional Thoughts...

- OPAL used 5 channels in a global analysis and achieved a total statistical error on ApolFB of 0.0076 with systematic error of 0.0025 or total error of 0.008, or 8/3*0.008=0.021 for error on P_e . This was with the equivalent of $22526/288400*467fb^{-1}=36fb^{-1}$.
- So to get to 1%, we'll need 144fb⁻¹

