2nd SuperB Collaboration Meeting Background Parallel session Dec. 15th 2011

Nov. 2011 FullSim Production Report

Alejandro Pérez INFN – Sezione di Pisa

Outline

- New BRN developments:
 - FDIRC: Cerencov photons and instrumentation
 - Fwd-EMC: New geometry
- Background frames production for FastSim
- Pairs background production
- Touschek (LER/HER) production

Fwd-EMC

- Request from Stefano Germani to test different options for Fwd-EMC device
 - Nominal configuration uses LYSO (Geometry_CIPE_V00-00-02)
 - New geometries being tested:
 - CSI: Csi with VPT readout (Geometry_CIPE_V00-00-02_CSI)
 - > BGO: Bgo with PMT readout (Geometry_CIPE_V00-00-02_BGO)
 - > PWO: Pwo with PMT readout (Geometry_CIPE_V00-00-02_PWO)
- Nov. 2011 production:
 - Geometry_CIPE_V00-00-02_PWO: Rad-Bhabha

FDIRC

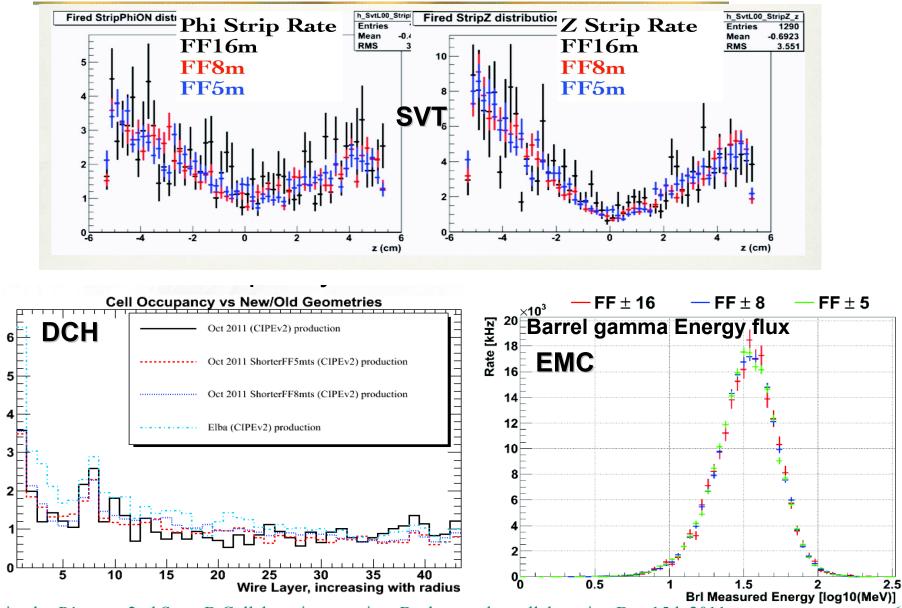
Previously:

- Stand Alone G4 simulation (Doug Roberts)
- BRN: FDIRC geometrical model, no instrumentation
- Currently:
 - A lot of work to insert stand alone model in BRN (Andrea Di Simone and Doug Roberts)
 - Many tests show no problems
 - Cerencov photons in the bars can be activates/deactivated. No significant increase on computing-time/output-size

Nov. 2011 production:

 Cerencov photons activated. See my talk later in this session about FDIRC backgrounds

Rad-bhabha bg-frames production (I)


- Current final focus (FF) model in FullSim is very complete, it covers from -16m to 16m
 - Rad-bhabha simulation takes ~10min per event
 - Impossible to produce the rad-bhabha bg-frames request of 1M events in a reasonable time

Approach to the problem:

- The reason of the long FF model is to have a realistic estimation of neutron rates on the subsystems (FDIRC, IFR, EMC)
- FastSim doesn't have a good simulation for neutrons
- Propose to build reduced version of the FF: ±8mts and ±5mts
- Run a small fullsim production with the reduced versions of the FF
 - Compare background rates on different subsystems for the different FF models: nominal (±16mts) and reduced ones (±8mts and ±5mts)

If rates are similar \Rightarrow can use the reduced FF for the bg-frame production

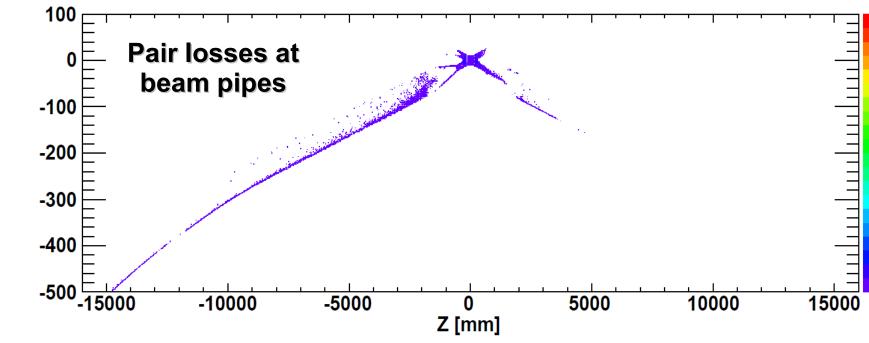
Rad-bhabha bg-frames production (II)

Alejandro Pérez, 2nd SuperB Collaboration meeting, Background parallel session Dec 15th 2011

Occupied cells (%)/ μ second

Rad-bhabha bg-frames production (III)

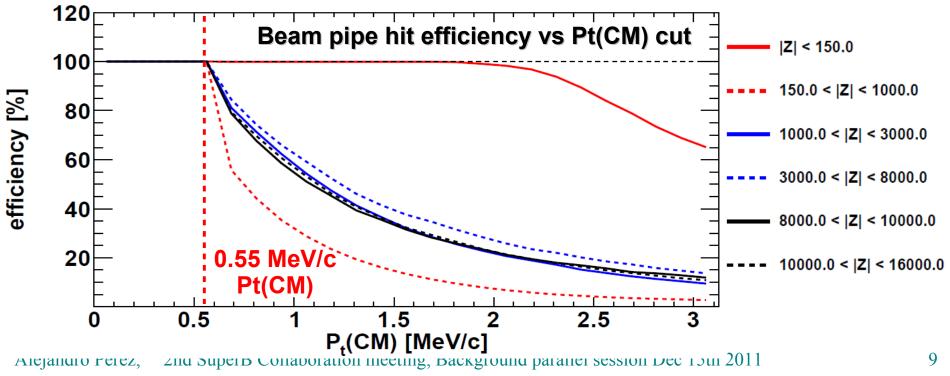
- Summary of comparison of FF models:
 - Most of the subsystems see very similar rates for the different FF models
 - Only the IFR sees different rates. Can we leave with this? FastSim IFR experts yes
 - See link below for the reports full reports on this


- The reduced FF model (±5mts) is the only approach that the FullSim group can offer to generate the requested 1M Rad-bhabha events in a reasonable time
 - \Rightarrow The reduced FF model of ±5mts have a factor of 10 lower execution time per event w.r.t. the nominal FF model (±16mts)
- Nov. 2011 production:
 - Use the ±5mts FF model (Geometry_CIPE_V00-00-02_ShorterFF5mts)

Pairs background production

- Use fastsim and diag36 generator to generate pairs primaries
- Kinematic cuts:

X [mm]

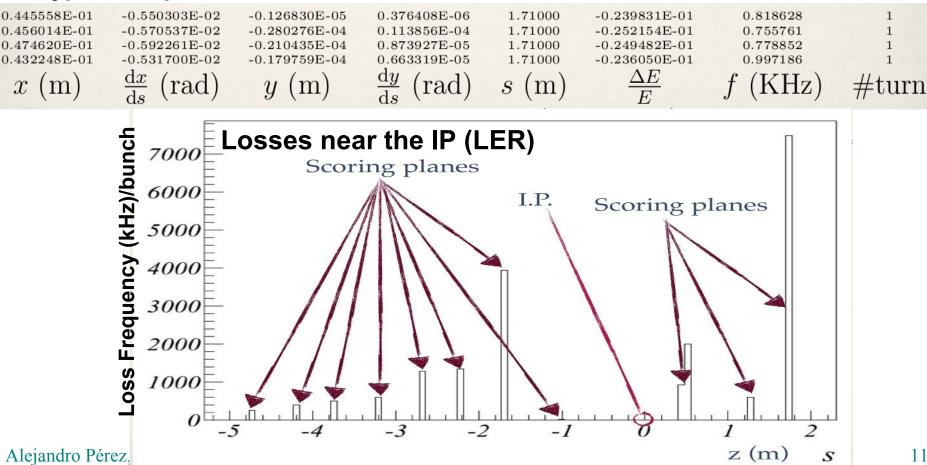

- Study the minimum Pt(CM) cut at generator level to not bias the pairs sample
- Study the losses at the beam pipes from Pairs to set-up the Pt(CM) cut

Pairs background production

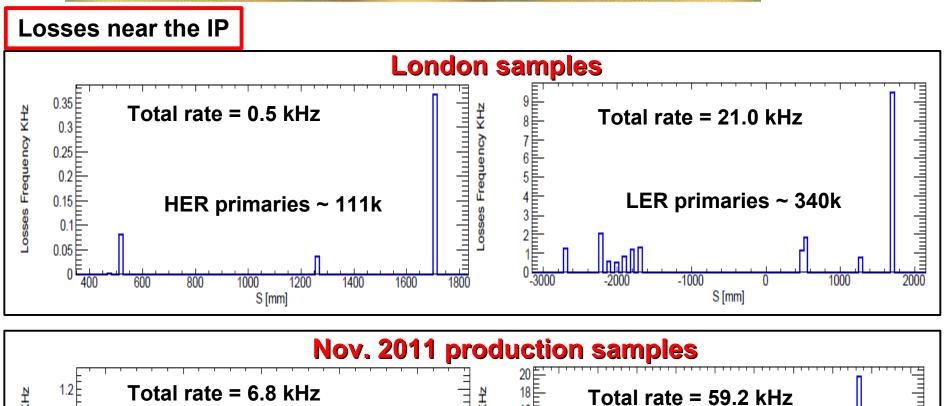
- Use fastsim and diag36 generator to generate pairs primaries
- Kinematic cuts:
 - Study the minimum Pt(CM) cut at generator level to not bias the pairs sample
 - Study the losses at the beam pipes from Pairs to set-up the Pt(CM) cut
 - Selects Pt(CM) > 0.55 MeV/c

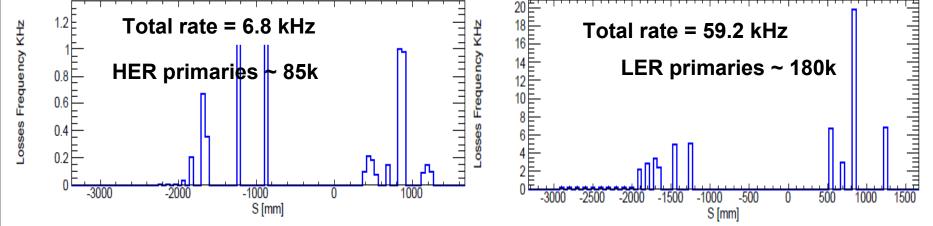
 $\Rightarrow \sigma(Pt(CM) > 0.55 \text{ MeV/c}) = 4.47 \text{mb} (\sigma(total) = 7.3 \text{mb})$

Pairs background production

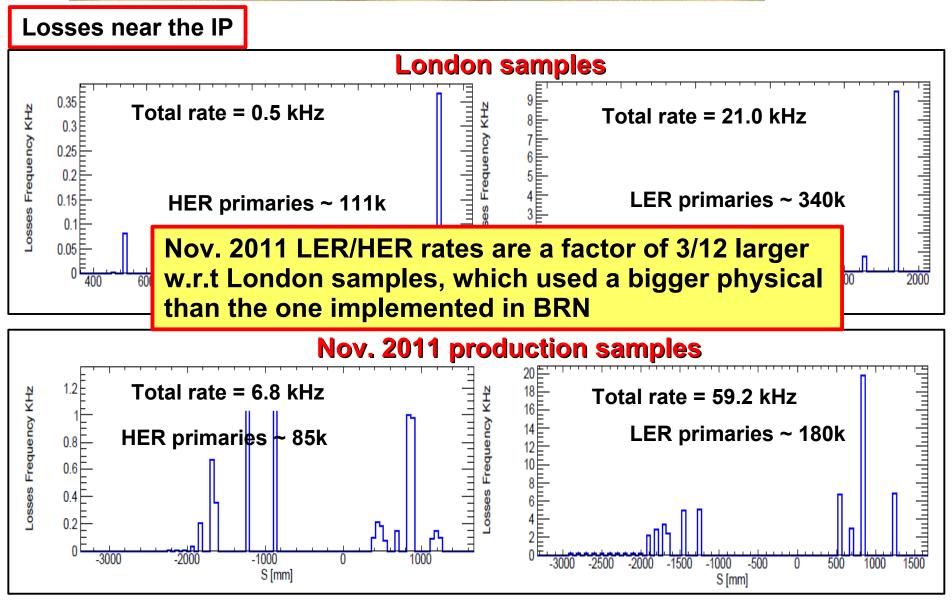

- Use fastsim and diag36 generator to generate pairs primaries
- Kinematic cuts:
 - Study the minimum Pt(CM) cut at generator level to not bias the pairs sample
 - Study the losses at the beam pipes from Pairs to set-up the Pt(CM) cut
 - Selects Pt(CM) > 0.55 MeV/c
 - $\Rightarrow \sigma(Pt(CM) > 0.55 \text{ MeV/c}) = 4.47 \text{mb} (\sigma(total) = 7.3 \text{mb})$
- Use guinea pig generator to inject pairs primaries in BRN
 - N-int-bunch = Lumi $\times \sigma/f_{c}$ = 19.5
 - Each events has <N-int-bunch> interactions
 - N primaries/events ~ 78 (500 rad-bhabha) \Rightarrow much faster

Touschek background production: strategy

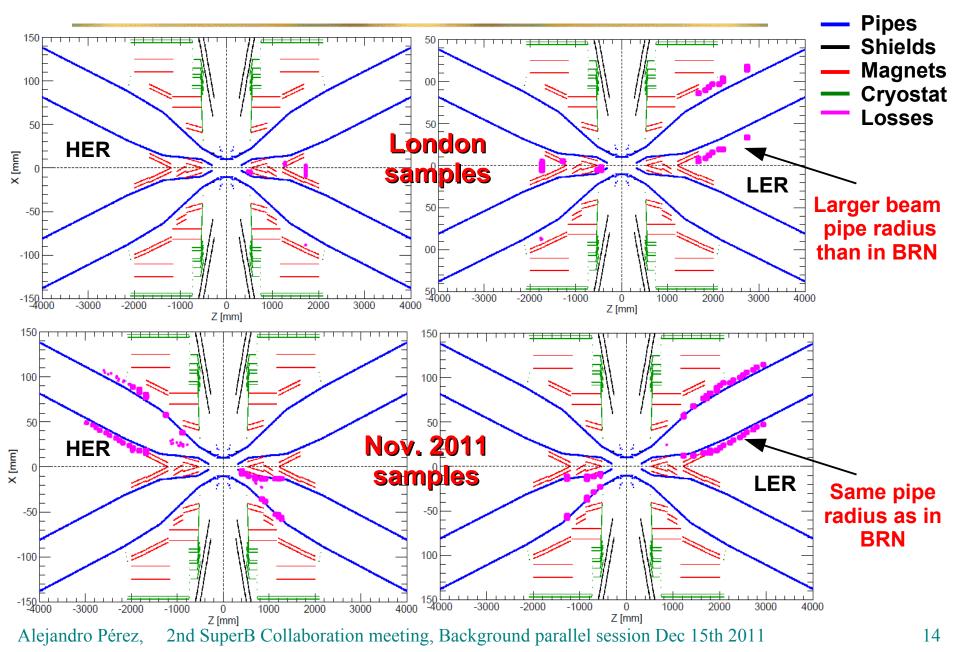

Primaries for BRN: STAR code (Manuela Boscolo)


- Simulate both Touschek and the beam gas scattering along the beam line
- Transport the scattered particles along the lattice
- Detect the collisions of these particles with the beam pipes (scoring planes)

Typical output:



Touschek background production: samples (I)



Touschek background production: samples (I)

Touschek background production: samples (II)

Production Work-flow (I)

Followed guide-lines proposed by Andrea Di Simone at the Elba SuperB meeting 2011

(http://agenda.infn.it/getFile.py/access? contribId=51&sessionId=65&resId=0&materiaIId=slides&confId=3352)

Added to the SuperB wiki

• Explanation these guide lines: Path to production

(http://mailman.fe.infn.it/superbwiki/index.php/Path_to_production)

 The implementation of the production work flow to be followed for each production. There will be a wiki-page for each production. The one corresponding to the current production can be look at the link below November 2011 production:

http://mailman.fe.infn.it/superbwiki/index.php/November_2011_production

Production Work-flow (II)

Software preparation:

Software preparation

[edit]

Summary M				BrnGeoMag OK (Pérez) M		BrnPID OK (Di Simone/Roberts) M	BrnRunTime OK (Pérez) M	BrnCore OK (Pérez/Di Simone/Paoloni) M	BrnApp OK (Pérez/Di Simone/Paoloni) M	Packages assembling OK (Pérez/Di Simone/Paoloni) M
Tag	V00-00-02	V00-00-02	V00-00-01	V00-00-02	V00-00-01	V00-00-01	V00-00-03	V00-00-03	V00-00-02	ок
Software quality OK	True	True	True	True	True	True	True	True	True	True

Before the creation of a new FullSim release the software need to be tested and fixed. There is a responsible for every BRN package that needs to create a new tag for production and sign-off on the code quality

Production Work-flow (III)

Release validation:

Release validation

[edit]

Release number 🗵	Release build/validation OK (Stroili) 🛛	Remote sites validation OK (Fella/Tomassetti) 🖂	Test release for production OK (Pérez/Paoloni) 🛛 🖂
V0.0.4	True	False	True

Once the tag for the different BRN packaged have being created, we proceed to build a new release.

- Release build/validation: Roberto Stroili
- Remote sites validation: Armando Fella/Luca Tomassetti
- Checkout/validation of the test release to be used for production: Pérez/Paoloni

Production Work-flow (IV)

Production requests:

Production requests

[edit]

Geometry M	Generator 🕅	N. Events	N. Jobs	Event/job	Time/Job (hours) ⊠	^{√3} Size/job (GB) ⋈	Total Size (TB) ⋈	Pre-approval (Pérez/Paoloni) ⊠
Geometry_CIPE_V00-00-02_PWO	Rad-BhaBha	10k	1k	10	~4	1.3	1.3	True
Geometry_CIPE_V00-00-02_PWO	Pairs	100k	340	300	~2	1.3	0.5	True
Geometry_CIPE_V00-00-02_PWO	Touschek	300k	1.5k	200	~2	1.6	1.5	True
Geometry CIPE V00-00-02 ShorterFF5mts	Rad-BhaBha FastSim bg-frames	1M	5k	200	~4	0.006	0.03	True

Production request are written in a table. It needs to be specified,

- Geometry
- Generator
- Estimation of: N. events, N. jobs, N. events/job, Time/job, Size/job, Total Size

The production request needs to be pre-approved: Pérez/Paoloni

Production Work-flow (V)

Pre-production: Pre-production

[edit]

Geometry M	Generator 🕅	N. Events ⊮	N. jobs ⊮	Events/Job 问	Time/Job ⋈	Disk-space/Job (GB) ₪	Run time OK ⊮	Physics Results OK M	Final Sign-off (Pérez/Paoloni) 🛛
Geometry_CIPE_V00-00-02_PWO	Rad-BhaBha	1k	100	10	~4	1.3	True	True	True
Geometry_CIPE_V00-00-02_PWO	Pairs	10k	34	300	~2	1.3	True	True	True
Geometry_CIPE_V00-00-02_PWO	Touschek	30k	150	200	~2	1.6	True	True	True
Geometry_CIPE_V00-00-02_ShorterFF5mts	Rad-BhaBha FastSim bg-frames	100k	500	200	~4	0.006	True	True	True

For all the pre-approved requests we will launch a pre-production of $\sim 10\%$ of all the total requested events. It need to be tested,

- Time/job, Size/job
- Physics results

If all tests give satisfactory results the request will receive a final sign-off (Pérez/Paoloni) and we will proceed with the full production

Nov. 2011 production summary

Rad-Bhabha (fullsim):

- Jobs: 1099 (25 exited), ~10k events
- Size: 1.4 TB
- Pairs (fullsim):
 - Jobs: 350 (22 exited), ~100k events
 - Size: 265 GB
- Touschek HER/LER:
 - Jobs: 1425 (65), ~180 (80k) primaries for LER (HER)
 - Size: 1.1TB
- Rad-Bhabha (bg-frames):
 - Jobs: 7324 (146 exited), ~900k events
 - Size: 39.4G

Exited jobs due to:

- Exceeded CPU memory limit
- Exceeded CPU time limit

