UPDATE ON QD0 DESIGN

Filippo Bosi, Pasquale Fabbricatore,
Stefania Farinon, Roberto Marabotto, Riccardo Musenich,
Davide Nardelli, Eugenio Paoloni

- A single short SC quadrupole for the LER. (Pantaleo requirement)
- A smaller crossing angle (Mike: simulation of Synchrotron radiation effects on the SVT)
- Displaced QD0 (Pasquale: cold mass + helium vessel + thermal insulation are objects in space)
- All the knots come to the comb
- We should try to have a consistent model

Frascati, Dec. 2011

How the Thing is Built

 \title{
Hard anodization

}
 \title{

Hard anodization

}

Groove Milling

- Anticorodal 6063 had been chosen for its high thermal conductivity at cryogenics temperature
- The grooves on the support cylinders are milled witm a 4 axis CNC machine, then electro polished and anodized
- The NbTi wire is insulated with a polyester braid
- The wire is deposited on the groove and kept in place by a layer of glass tape
- The two cylinder are then coupled and epoxy impregnated $L^{I N F N}$ E.Paoloni for the SuperB QDO group

Touble Rililical Cdils Main Concept

- Compact and thin cold mass: $2 \times$ wire diameters + few mm

MOPAS055 Proceedings of PAC07, Albuquerque, New Mexico, USA

- Excellent field quality over the whole aperture combined function magnets using double-helix coils *
C. Goodzeit, R. Meinke, M. Ball, Advanced Magnet Lab, Inc., Melbourne, FL 32901, U.S.A.
- Arbitrary multipole combinations can be generated by a proper coil shape

Cross Talk Compensatidn

- Idea: exploit the superposition principle to design the coil shape in such a way that the integrated beam kick is a linear function of the displacement from the reference orbit

The aigebra Behini The Curtain

Zero-th order approximation: the particle is undeflected (i.e. she travels parallel to the magnet axis) First order correction: the particle get a transverse kick proportional to the the B field integrated over the zero-th order trajectory, that is:

$$
\left.\overrightarrow{\mathcal{B}}(x, y, z) \equiv \int_{-\infty}^{+\infty} \overrightarrow{\mathbf{B}}(x, y, z+\lambda)\right) d \lambda, \quad \partial_{z} \overrightarrow{\mathcal{B}}(x, y, z)=\overrightarrow{0}
$$

$\overrightarrow{\mathcal{B}}$ is a solution of the magnetostatic equations being a linear superposition of \vec{B} fields in vacuum, it is invariant for translations along the \hat{z} direction hence can be conveniently described by an harmonic function

$$
\begin{array}{rl}
\zeta \equiv x+i y & B(\zeta) \equiv \mathcal{B}_{y}+i \mathcal{B}_{x} \\
B(\zeta)=\sum_{n=1}^{\infty} C_{n} \zeta^{n-1} \quad C_{n}=\frac{1}{2 \pi i} \oint \frac{B(\zeta)}{\zeta^{n}} d \zeta
\end{array}
$$

C_{n} are given by the value of $B(\zeta)$ on a circle \Rightarrow the overall field is determined by its value on a circle
E.Paoloni for the SuperB QDO group

COMPENSATIDN SCHEME

Determine the winding shape (for each winding) so that $\mathrm{B}(\mathrm{z})$ is the desired one:

1) Use Biot \& Savart (i.e. neglect the wire thickness)

$$
\overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}})=I \frac{\mu_{0}}{4 \pi} \int \frac{\overrightarrow{\mathbf{w}}^{\prime}(l) \times(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{w}}(l))}{|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{w}}(l)|^{3}} d l
$$

where $\overrightarrow{\mathbf{w}}(l)$ gives the position of the center of the SC wires as a function of some continuous parameters l and I is the current flowing in the wire. From this expression one can obtain for $\overrightarrow{\mathcal{B}}$:

$$
\begin{align*}
& \overrightarrow{\mathcal{B}}(\overrightarrow{\mathbf{r}})= \\
& =I \frac{\mu_{0}}{2 \pi} \int \frac{\overrightarrow{\mathbf{w}}_{\|}^{\prime}(l) \times(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{w}}(l))+\overrightarrow{\mathbf{w}}_{\perp}^{\prime}(l) \times\left(\overrightarrow{\mathbf{r}}_{\perp}-\overrightarrow{\mathbf{w}}_{\perp}(l)\right)}{\left|\overrightarrow{\mathbf{r}}_{\perp}-\overrightarrow{\mathbf{w}}_{\perp}(l)\right|^{2}} d l \tag{4}
\end{align*}
$$

CDMIPESATITNSCRIEME

Parametrize $\overrightarrow{\mathbf{w}}(l)$ as an interpolating polinomial controlled by N key points sliding along the support cylynder.

Determine the position of these N point in such a way that $B(z)$ is the desired one on N points over the reference circumference.

Compensated Winiding Shape

Compensatel Winiding Shape (prelim.)

$\mathrm{I}=3000 \mathrm{~A}$
Nturns=110
Gradient $=100 \mathrm{~T} / \mathrm{m}$
Magnetic Length $=300 \mathrm{~mm}$
$\mathrm{R}=18 \mathrm{~mm}$
CPU time for a single winding:
1700s ($\mathrm{N}=32$ points/

Windings (HER projection)

Frascati, Dec. 2011

Convergence Check ($\mathrm{N}=1$ 1/ vs $\mathrm{N}=3$? B)

 (molsFrascati, Dec. 2011

CONVERGENCE CHECK (N=16 vS $\mathrm{N}=3$ B) dZ (mm)

Frascati, Dec. 2011

CDNClusidns

- An algorithm to compensate the cross talk for the twin QD0 with converging mechanical and magnetic axis had been presented
- Limitation:
- The algorithm converges as long as each magnetic axis is parallel to the mechanical axis of its support cylinder
- Test passed:
- The algorithm is able to find the single quadrupole solution
- The algorithm is able to reproduce the twin quadrupoles with parallel axis compensation

