UPDATE ON QD0 DESIGN

Filippo Bosi, Pasquale Fabbricatore,

Stefania Farinon, Roberto Marabotto, Riccardo Musenich,

Davide Nardelli, Eugenio Paoloni

INTERACTION REGION LAYOUT

DIFFERENCES W.R.T. V16 LATTICE

- A single short SC quadrupole for the LER. (Pantaleo requirement)
- A smaller crossing angle (Mike: simulation of Synchrotron radiation effects on the SVT)

Displaced QD0 (Pasquale: cold mass + helium vessel + thermal insulation are

objects in space)

All the knots come to the comb

We should try to have a consistent model

SuperB

HOW THE THING IS BUILT

Electro Polishing

Hard anodization

- Anticorodal 6063 had been chosen for its high thermal conductivity at cryogenics temperature
- The grooves on the support cylinders are milled with a 4 axis CNC machine, then electro polished and anodized
- The NbTi wire is insulated with a polyester braid
- The wire is deposited on the groove and kept in place by a layer of glass tape
- The two cylinder are then coupled and epoxy impregnated [INFN] E.Paoloni for the SuperB QDO group

DOUBLE HELICAL COILS MAIN CONCEPT

- Compact and thin cold mass: 2 x wire diameters + few mm
- Excellent field quality over the whole aperture

10PAS055 Proceedings of PAC07, Albuquerque, New Mexico, USA

COMBINED FUNCTION MAGNETS USING DOUBLE-HELIX COILS *

C. Goodzeit, R. Meinke, M. Ball, Advanced Magnet Lab, Inc., Melbourne, FL 32901, U.S.A.

Arbitrary multipole combinations can be generated by a proper coil shape

Supe

E.Paoloni for the SuperB QDO group

CROSS TALK COMPENSATION

Idea: exploit the superposition principle to design the coil shape in such a
way that the integrated beam kick is a linear function of the displacement
from the reference orbit

THE ALGEBRA BEHIND THE CURTAIN

Zero-th order approximation: the particle is undeflected (i.e. she travels parallel to the magnet axis) First order correction: the particle get a transverse kick proportional to the B field integrated over the zero-th order trajectory, that is:

$$\vec{\mathcal{B}}(x,y,z) \equiv \int_{-\infty}^{+\infty} \vec{\mathbf{B}}(x,y,z+\lambda)) d\lambda, \qquad \partial_z \vec{\mathcal{B}}(x,y,z) = \vec{0}$$

 \vec{B} is a solution of the magnetostatic equations being a linear superposition of \vec{B} fields in vacuum, it is invariant for translations along the \hat{z} direction hence can be conveniently described by an harmonic function

$$\zeta \equiv x + i y$$
 $B(\zeta) \equiv \mathcal{B}_y + i \mathcal{B}_x$

$$B(\zeta) = \sum_{n=1}^{\infty} C_n \zeta^{n-1} \qquad C_n = \frac{1}{2\pi i} \oint \frac{B(\zeta)}{\zeta^n} d\zeta$$

 C_n are given by the value of $B(\zeta)$ on a circle \Rightarrow the overall field is determined by its value on a circle

COMPENSATION SCHEME

Determine the winding shape (for each winding) so that B(z) is the desired one:

1) Use Biot & Savart (i.e. neglect the wire thickness)

$$\vec{\mathbf{B}}(\vec{\mathbf{r}}) = I \frac{\mu_0}{4\pi} \int \frac{\vec{\mathbf{w}}'(l) \times (\vec{\mathbf{r}} - \vec{\mathbf{w}}(l))}{|\vec{\mathbf{r}} - \vec{\mathbf{w}}(l)|^3} dl$$

where $\vec{\mathbf{w}}(l)$ gives the position of the center of the SC wires as a function of some continuous parameters l and I is the current flowing in the wire. From this expression one can obtain for $\vec{\mathcal{B}}$:

$$\vec{\mathcal{B}}(\vec{\mathbf{r}}) =$$

$$= I \frac{\mu_0}{2\pi} \int \frac{\vec{\mathbf{w}}'_{\parallel}(l) \times (\vec{\mathbf{r}} - \vec{\mathbf{w}}(l)) + \vec{\mathbf{w}}'_{\perp}(l) \times (\vec{\mathbf{r}}_{\perp} - \vec{\mathbf{w}}_{\perp}(l))}{|\vec{\mathbf{r}}_{\perp} - \vec{\mathbf{w}}_{\perp}(l)|^2} dl$$

COMPENSATION SCHEME

Parametrize $\vec{\mathbf{w}}(l)$ as an interpolating polinomial controlled by N key points sliding along the support cylynder.

Determine the position of these N point in such a way that B(z) is the desired one on N points over the reference circumference.

E.Paoloni for the SuperB QDO group

COMPENSATED WINDING SHAPE

COMPENSATED WINDING SHAPE (PRELIM.)

I=3000A Nturns=110 Gradient = 100 T/m $Magnetic \ Length=300 \text{ mm}$ R = 18 mm $CPU \ time \ for \ a \ single$ winding: $1700s \ (N = 32 \text{ points/})$

CONVERGENCE CHECK (N=16 VS N=32)

E.Paoloni for the SuperB QDO group

CONVERGENCE CHECK (N=16 VS N=32)

dZ (mm)

CONCLUSIONS

- An algorithm to compensate the cross talk for the twin QD0 with converging mechanical and magnetic axis had been presented
- Limitation:
 - The algorithm converges as long as each magnetic axis is parallel to the mechanical axis of its support cylinder
- Test passed:
 - The algorithm is able to find the single quadrupole solution
 - The algorithm is able to reproduce the twin quadrupoles with parallel axis compensation

