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INTERACTION REGION LAYOUT
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DIFFERENCES W.R.T. V16 LATTICE

A single short SC quadrupole for the LER. ( Pantaleo requirement )

A smaller crossing angle (Mike: simulation of Synchrotron radiation effects on 
the SVT)

Displaced QD0 (Pasquale: cold mass + helium vessel + thermal   insulation are 
objects in space)

All the knots come to the comb 

We should try to have a consistent 
model
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HOW THE THING IS BUILT
Electro Polishing

Groove Milling

Anticorodal 6063 had been chosen for its high
thermal conductivity at cryogenics temperature

The grooves on the support cylinders are milled with
a 4 axis CNC machine, then electro polished and anodized

The NbTi wire is insulated with a polyester braid

The wire is deposited on the groove and kept in place
by a layer of glass tape

The two cylinder are then coupled and epoxy impregnated

Hard anodization
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DOUBLE HELICAL COILS MAIN CONCEPT

Compact and thin cold mass: 2 x wire diameters + few mm

Excellent field quality over the whole aperture

Arbitrary multipole combinations can be generated by a proper coil shape
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CROSS TALK COMPENSATION 

Idea: exploit the superposition principle to design the coil shape in such a 
way that the integrated beam kick is a linear function of the displacement 
from the reference orbit

2D Simulation
 ( Poisson )

 Jz ∝ cos 2φ 

quadrupolar field
By ∝ x

Cross talk
By ∝ 1/x3

 Jz = 0 
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THE ALGEBRA BEHIND THE CURTAIN
Zero-th order approximation: the particle is undeflected (i.e. she travels parallel to the magnet axis)

First order correction: the particle get a transverse kick proportional to the the B field integrated 
over the zero-th order trajectory, that is:
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COMPENSATION SCHEME
Determine the winding shape (for each winding) so that B(z) is the 
desired one: 
1) Use Biot & Savart (i.e. neglect the wire thickness)

1AO-1 3

The small thickness of the cold mass (that cannot exceed
a few millimeters) impedes a conventional design, hence a
novel compensation technique had been developed to solve
this problem. An algebraic approach to compensate the cross
talk of two adjacent and parallel DHM by a proper modulation
of the helical turns of the DHM had been presented in [7]. The
algorithm cancels exactly all the spurious harmonics integrated
over a straight line parallel to the mechanical axis of the
cylinders, however the finite crossing angle at the IP spoils
the result of the optimization since the nominal trajectories
of the LER and of the HER cannot be both parallel to the
mechanical axis of the two DHM. To overcome this problem
a new algorithm had been developed. The integrated field
harmonics can be readily evaluated using the integrated field
!B defined as:

!B(!r) =

∫ +∞

−∞

!B(!r + λŝ) dλ (1)

where !B is the magnetic induction field, !r is a point in space
and ŝ is the versor directed along the reference trajectory ve-
locity. The !B field is a solution of the magnetostatic equations
(ME) since it can be interpreted as a linear superposition of
solutions of the ME and it is invariant under translations along
ŝ, that is !B(!r) = !B(!r + δŝ), hence !B is a solution of the
two dimensional ME and its components transverse to ŝ can
be represented inside the domain in which there are no field
sources by an analytic function defined as:

f(x + iy) = By(xx̂ + yŷ) + iBx(xx̂ + yŷ) =

=
∞∑

n=1

Cn (x + iy)n−1 (2)

where the Cn (that are directly proportional to the integrated
field harmonics) can be obtained from the Cauchy formula:

Cn =
1

2πi

∮
f(z)

zn
dz (3)

A good approximation of !B for DHM made by thin round
SC wires is given by the Biot Savart law

!B(!r) = I
µ0

4π

∫
!w′(l) × (!r− !w(l))

|!r − !w(l)|3
dl

where !w(l) gives the position of the center of the SC wires as
a function of some continuous parameters l and I is the current
flowing in the wire. From this expression one can obtain for
!B:

!B(!r) =

= I
µ0

2π

∫ !w′
‖(l) × (!r − !w(l)) + !w′

⊥(l) × (!r⊥ − !w⊥(l))

|!r⊥ − !w⊥(l)|2
dl

(4)

where !w⊥ = !w − ŝ (ŝ · !w), !w‖ = ŝ (ŝ · !w) and analogously
for !r‖ and !r⊥.
The optimization algorithm consist in approximating !w (that

is, physically, the shape of the helical coil) with an Hermite

interpolation function controlled by 2N points whose position
is determined by solving the set of N complex equations

f(Rref ) = kRref

f(Rrefei2π/N ) = kRrefei2π/N

...
f(Rrefei(N−1)2π/N ) = kRrefei(N−1)2π/N

. To test the correctness of the procedure sketched here we
compared the coil shape obtained with this method against
the result obtained with the technique presented in [7], the
shapes of the two coils are identical whitin less than a micron
when N = 48.
The optimization algorithm is applied to determine sepa-

rately the shape of each single winding of the QD0.
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Fig. 5. The LER QD0 longitudinal current density and the winding
modulation obtained with the compensation algorithm are presented in the
top and bottom plot respectively with a continuous line. The corresponding
quantities for a single ideal quadrupole are represented with a dashed line.

The result of this method applied to the first winding of the
LER QD0 is represented in Fig. 5 together with the analytical
solution for a single quadrupole. The angle ϕ = 0 in which
the cross talk compensated shape departs more evidently from
the single quadrupole ideal one, corresponds to the point of
the LER QD0 winding closest to the nearby HER one.
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The result of this method applied to the first winding of the
LER QD0 is represented in Fig. 5 together with the analytical
solution for a single quadrupole. The angle ϕ = 0 in which
the cross talk compensated shape departs more evidently from
the single quadrupole ideal one, corresponds to the point of
the LER QD0 winding closest to the nearby HER one.
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COMPENSATION SCHEME

LER HER

LER QD0 LER QD0HER QD0 HER QD0

The B field is integrated
over lines parallel to the 

LER or HER
passing through these

reference points

Windings control knots.
Their position is determined
so that the integrated B field

on the reference points is the desired one. 

1AO-1 3
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where !w⊥ = !w − ŝ (ŝ · !w), !w‖ = ŝ (ŝ · !w) and analogously
for !r‖ and !r⊥.
The optimization algorithm consist in approximating !w (that

is, physically, the shape of the helical coil) with an Hermite

interpolation function controlled by 2N points whose position
is determined by solving the set of N complex equations

f(Rref ) = kRref

f(Rrefei2π/N ) = kRrefei2π/N

...
f(Rrefei(N−1)2π/N ) = kRrefei(N−1)2π/N

. To test the correctness of the procedure sketched here we
compared the coil shape obtained with this method against
the result obtained with the technique presented in [7], the
shapes of the two coils are identical whitin less than a micron
when N = 48.
The optimization algorithm is applied to determine sepa-

rately the shape of each single winding of the QD0.
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Fig. 5. The LER QD0 longitudinal current density and the winding
modulation obtained with the compensation algorithm are presented in the
top and bottom plot respectively with a continuous line. The corresponding
quantities for a single ideal quadrupole are represented with a dashed line.

The result of this method applied to the first winding of the
LER QD0 is represented in Fig. 5 together with the analytical
solution for a single quadrupole. The angle ϕ = 0 in which
the cross talk compensated shape departs more evidently from
the single quadrupole ideal one, corresponds to the point of
the LER QD0 winding closest to the nearby HER one.
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COMPENSATED WINDING SHAPE
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COMPENSATED WINDING SHAPE (PRELIM.)

- 50 - 40 - 30 - 20 - 10 10

- 15

- 10

- 5

5

10

15

- 10 10 20 30 40 50

- 15

- 10

- 5

5

10

15

Windings (LER projection)

Windings (HER projection)

- 3 - 2 - 1 1 2 3

- 20

- 10

10

20

Jz (Arbitrary Units)

- 3 - 2 - 1 1 2 3

- 10

- 5

5

10

z (mm)

I=3000A
Nturns=110

Gradient = 100 T/m
Magnetic Length=300 mm

R = 18mm
CPU time for a single 

winding:
1700s ( N = 32 points/ 
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CONVERGENCE CHECK (N=16 VS N=32)
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CONVERGENCE CHECK (N=16 VS N=32)
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CONCLUSIONS

An algorithm to compensate the cross talk for the twin QD0 with converging mechanical 
and magnetic axis had been presented

Limitation:

The algorithm converges as long as each magnetic axis is parallel to the mechanical 
axis of its support cylinder

Test passed:

The algorithm is able to find the single quadrupole solution

The algorithm is able to reproduce the twin quadrupoles with parallel axis 
compensation
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