CICLO DI LEZIONI SEMINARIO SU FUSIONE NUCLEARE: INTRODUZIONE E PROSPETTIVE

DIPARTIMENTO DI FISICA, UNIVERSITÀ DI PISA, 20 MAGGIO 2024

Experimental Roadmap for Inertial Fusion in Europe

Leonida Antonio GIZZI

Consiglio Nazionale delle Ricerche Istituto Nazionale di Ottica, Pisa, Italy

CNR Campus in Pisa

THE

TTE

-

MEEL

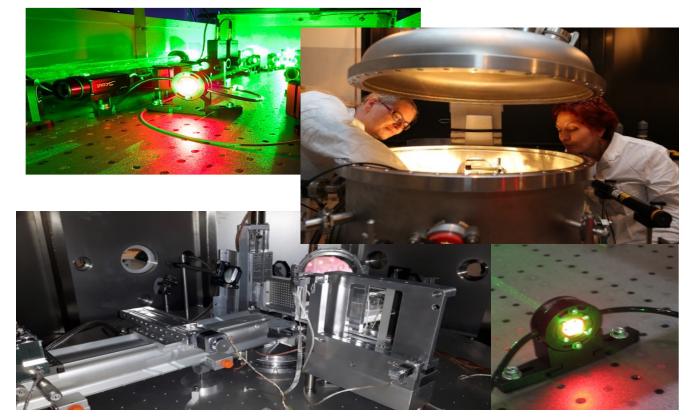
I

IR – Istituto Nazionale di Ottica Intense Laser Irradiation Lab Pisa, Italy

A node of the Italian ELI Network A founding member of the EuPRAXIA ESFRI infrastructure

Intense Laser Irradiation Laboratory

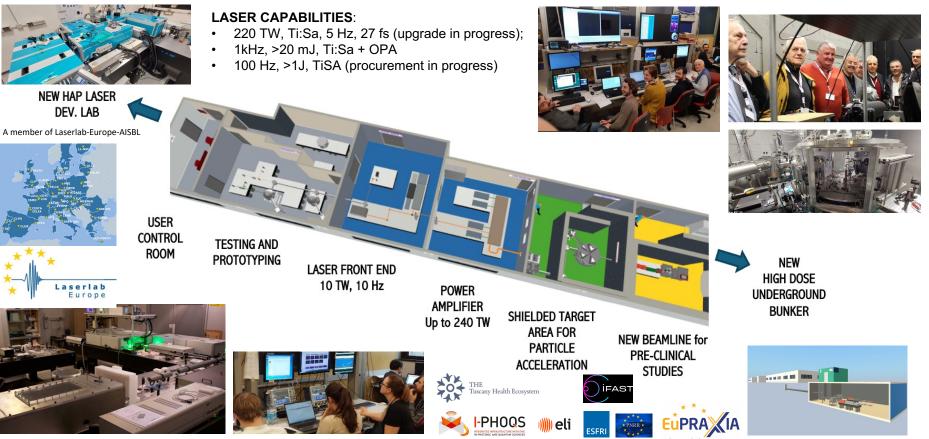
Istituto Nazionale di Ottica – Consiglio Nazionale delle Ricerche



Intense Laser Irradiation Laboratory CNR, Pisa, Italy

PEOPLE

Leonida A. GIZZI (Head) Fernando BRANDI Gabriele CRISTOFORETTI Petra KOESTER Luca LABATE Federica BAFFIGI Lorenzo FULGENTINI Gabriele BANDINI Costanza PANAINO Simona PICCININI Martina SALVADORI Emma HUME Alessandro FREGOSI Daniele PALLA Federico AVELLA (PhD) David GREGOCKI (PhD) Simon VLACHOS (PhD)


Intense Laser Irradiation Laboratory

Istituto Nazionale di Ottica – Consiglio Nazionale delle Ricerche

Intense Laser Irradiation Laboratory CNR, Pisa, Italy

Advanced Photon Source

- Recap on ICF status
- Physics of laser-plasma interactions
- Experimental platforms and Roadmap
- HiPER+ programme outlook
- Summary

CONTENTS

• Recap on ICF status

- Physics of laser-plasma interactions
- Experimental platforms and Roadmap
- HiPER+ programme outlook
- Summary

- The journey of nuclear fusion has started about 80 years ago (Sacharov, Teller, ...) with many highs and lows;
- 60 years ago, the laser was invented, opening the field of "Inertial Confinement Fusion (ICF)" (Basov, Nuckolls, ...);
 - In December 2022, experiments performed at the National Ignition Facility (NIF) in the U.S. have demonstrated a "net energy gain" from an inertial confinement fusion (ICF) experiment;
 - Today for the first time in history we have the demonstration of ignition, the scientific feasibility of fusion, which concludes the first part of this journey.

INERTIAL CONFINEMENT FUSION

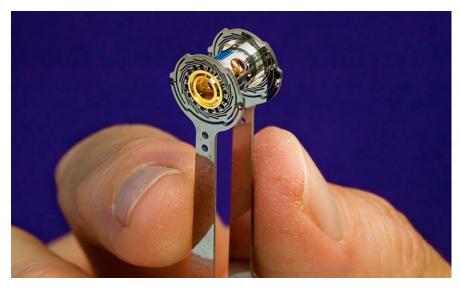
The original Direct Drive scheme*

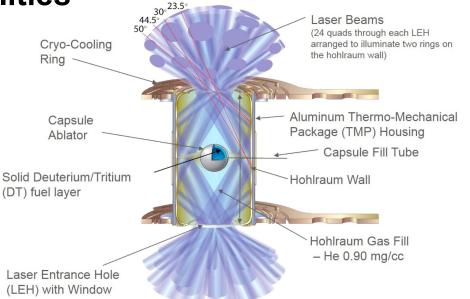
Fase 1: irraggiamento tramite laser della capsula contenente DT

Con <u>l'ignizione</u>, il processo di fusione si autosostiene con il calore generato dagli stessi eventi di fusione

La fusione completa del combustibile avviene per il breve tempo durante il quale la pallina resta compressa (inerzia) Fase 2: Compressione e riscaldamento

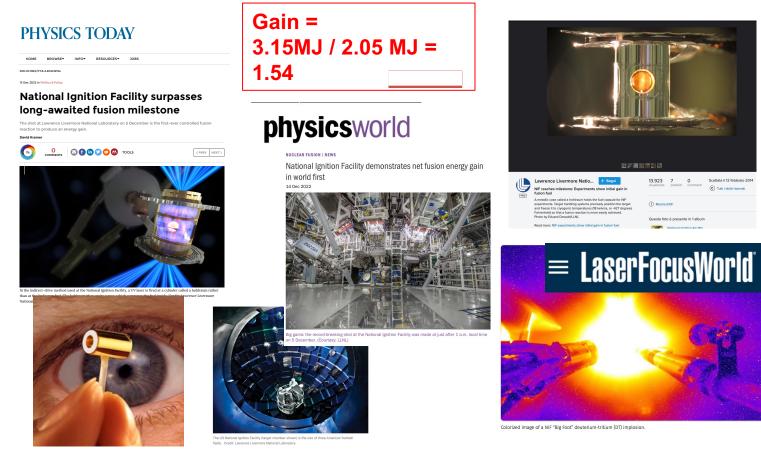
Fase 3: Ignizione della fusione


Fase 4: "Burn"


*N. G. Basov, O. N. Krokhin, and G. V. Sklizkov, in *Laser Interaction and Related Plasma Phenomena* (Springer, 1972), p. 389. *J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, Nature 239, 139 (1972).

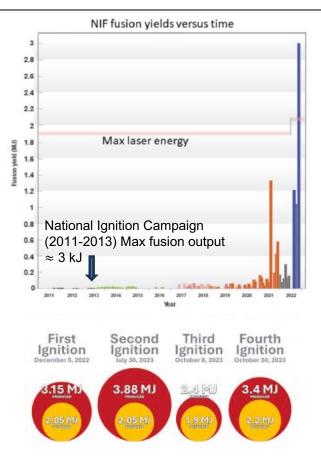
INDIRECT DRIVE

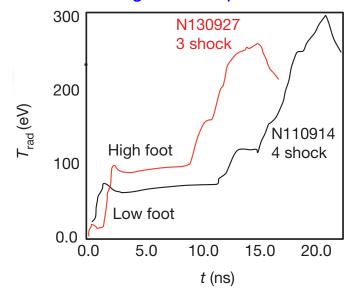
Configuration to overcome irradiation nonuniformities and seeding of Hydrodynamic instabilities


John Lindl; Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. *Phys. Plasmas* 1 November 1995; 2 (11): 3933–4024. <u>https://doi.org/10.1063/1.871025</u>

BREAKTHROUGH

In December 2022, experiments performed at the National Ignition Facility (NIF) in the U.S. have demonstrated a "net energy gain" from an inertial confinement fusion (ICF) experiment

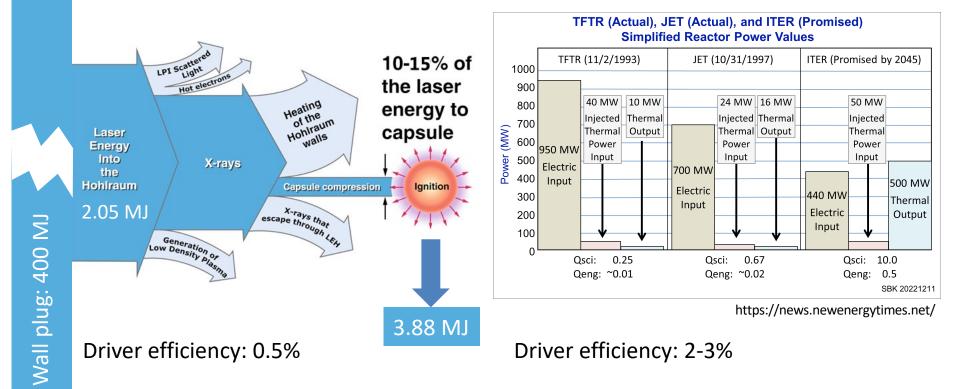

C Tutti i dirtti i



MAIN IMPROVEMENTS

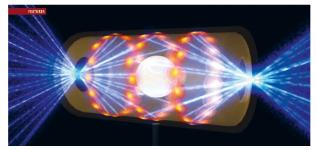
LONG AND DIFFICULT WAY TO SUCCESS

"High foot" implosions


In addition to using higher foot, NIF result was obtained thanks to: Different ablators (HDC: synthetic diamond) Different gas pressure in the holhraum Reduced holhraum size and bigger pellet Improved radiation uniformity Improved target quality (roughness)

ENERGETICS OF FUSION

ICF (pulse: Energy)


MCF (CW: Power)

Driver efficiency of lasers still at the 1st generation: 20-40x improvement possible

MAJOR IMPACT OF NIF RESULTS

BREAKTHROUGH AT THE NIF PAVES THE WAY TO INERTIAL FUSION ENERGY

S. Atzeni¹, D. Batanl², C. N. Danson^{3,4}, L. A. Gizzl⁵, S. Le Pape⁶, J-L. Miquel⁷, M. Perlado⁶, R.H.H. Scott⁹, M. Tatarakis^{10,11}, V. Tikhonchuk^{2,12}, and L. Volpe^{13,14} - DOI: https://doi.org/10.1051/epn/2022106

In August 2021, at the National Ignition Facility of the Lawrence Livermore National Laboratory in the USA, a 1.35 MJ fusion yield was obtained. It is a demonstration of the validity of the Inertial Confinement Fusion approach to achieve energy-efficient thermonuclear fusion in the laboratory. It is a historical milestone that the scientific community has achieved after decades of efforts.

18 EPN 53/1

An evaluation of sustainability and societal impact of high-power laser and fusion technologies: a case for a new European research infrastructure

Part of: HPL Perspectives

Published online by Cambridge University Press: 21 September 2021

High Power Laser

S. Atzeni, D. Batani, C. N. Danson, L. A. Gizzi, M. Perlado, M. Tatarakis 📵, V. Tikhonchuk and L. Volpe Show author de

HiPER+ Project

Letter to launch the HiPER+ project has been so-far signed by more than 150 European scientists

https://www.clpu.es/Laser_Fusion_HiPER

Contribution Report of the "HiPER+ group" to the **ESFRI Landscape analysis** of Research Infrastructures (April 2023) Contacts with **EURATOM**, **EUROFusion**

MAJOR IMPACT OF NIF RESULTS

NIF results provide a validation of the Inertial Fusion concept, achieving ignition beyond breakeven, and opening the pathway to gain.

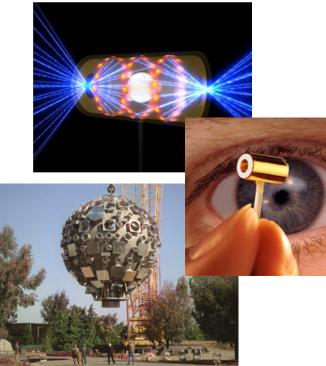
For the first time U.S is evaluating the possibility of developing national projects on Inertial Fusion Energy (IFE) as a future source of energy

 Basic Research Needs report: a foundational guide for DOE to establish a national IFE program in the USA

Germany has suddenly changed its attitude towards IFE

 Memorandum on laser IFE for the federal ministry of education and research of Germany (May 2023) and more recently statement of allocation of 1 B€ to fusion research

German scientists immediately got involved within HiPER+. Creating even larger collaboration with the German scientific community is a priority or HiPER+

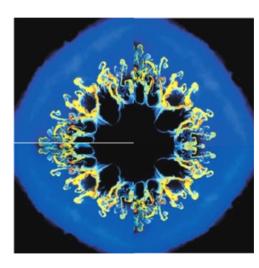


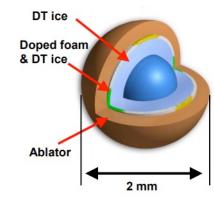
NIF results represent a breakthrough. However, INDIRECT DRIVE used at NIF **does not seem to be compatible** with requirements for future fusion reactors:

- Complex targets;
- Massive targets (lot of high-Z material in chamber);
- Intrinsic low gain due to step of X-ray conversion;
- "Political" issues due to the military/defense use.

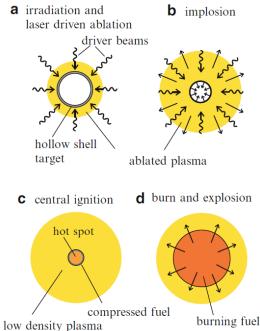
It is now **timely** to go beyond NIF results:

- Science: Investigate the original DIRECT DRIVE approach which can provide the gain needed for energy production
- Technology: Address the engineering issues related to IFE: high repetition rate lasers, target development, damages to optics, tritium breeding, ...





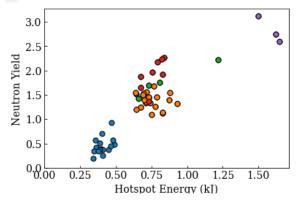
DIRECT DRIVE ICF


- Pros:
- Coupling efficiency 4-5% we can compress larger mass capsules and we need lower pressures to get ignition 140 Gbar vs. 350 Gbar compared to ID
- simpler targets, potentially compatible with high-repetition rate operation for inertial fusion energy reactors.

<u>Cons:</u> Direct Drive is prone to hydro-instabilities (Rayleigh-Taylor) due to direct laser irradiation non-uniformities and target imperfections.

EXPERIMENTAL EVIDENCE OF DIRECT DRIVE

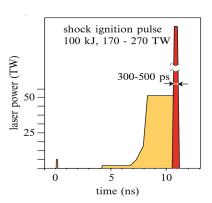
Recent experiments at **OMEGA** show a steady progress in the **DIRECT DRIVE** experiments: increase of neutron yield by 10 times and energy coupling to the hot spot by 6 times (recent experiments used a **deep learning approach** to optimize implosions).


Laser direct drive experiments couple 3-6 times more energy to the hot spot compared to the NIF indirect drive experiments

However, we know that Direct Drive is more subject to the growth and the impact of **hydro instabilities** which distort the target during implosion and may finally break it

DIRECT DRIVE EXPERIMENTS AT OMEGA: 30 KJ

V. Gopalaswamy et al. Nature 2019 V. Goncharov EUROfusion seminar, 2022


Omega Laser Laboratory for Laser Energetics University of Rochester

How to mitigate the impact of hydro instabilities in Direct Drive? Separation of the compression phase and the ignition phase.

Options:
Fast Ignitionexotic and non-scalable physics
requires $\geq 100 \ kJ \ 10 \ ps$ laser facility OImage: Non-scalable physics
()

fast ignition pulse 100 kJ, 7000 TW

main pulse

15 ps

10

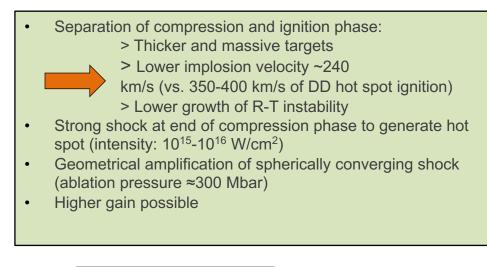
180 kJ

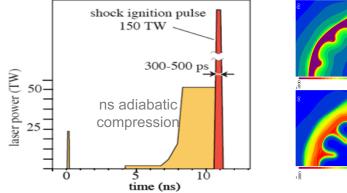
adiabat-shaping picket

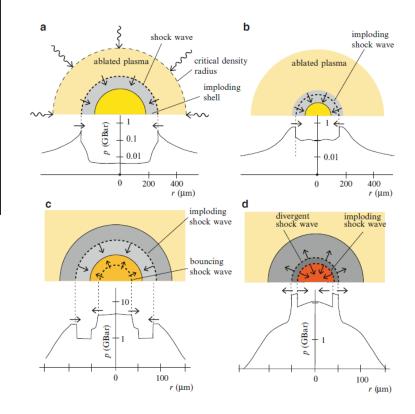
foot

5 time (ns)

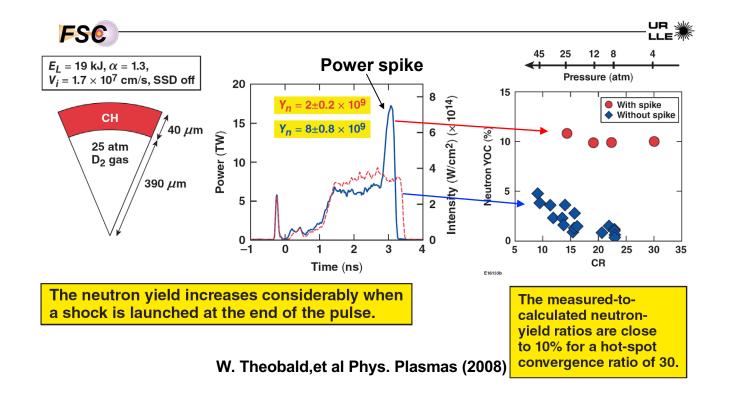
50-


25-


0


SHOCK IGNITION: BASICS

Scheme proposed by R. Betti, J.Perkins et al. [PRL 98 (2007)] and anticipated by V.A.Shcherbakov [Sov.J. Plasma Phys. 9, 240 (1983)];

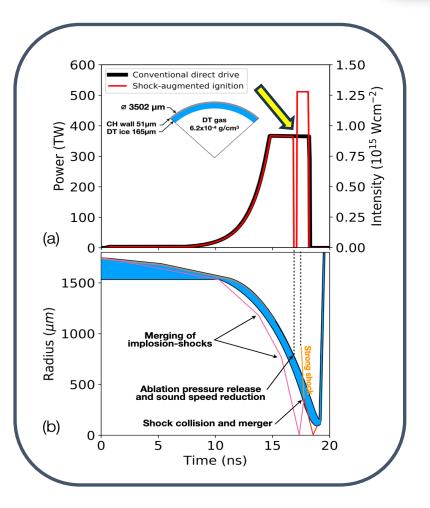


Phases of Shock Ignition ICF

Shock-ignition experiments on OMEGA have shown improved performance with a shock launching spike at the end of the laser pulse

NEW: SHOCK-AUGMENTED DIRECT DRIVE

Concept:


- Generate a very strong shock without very high power or intensity
- Mitigate the challenges related to parametric instabilities and hot electrons

Method:

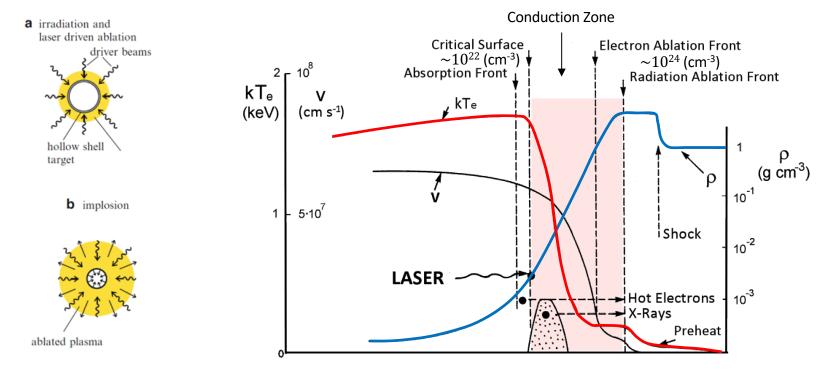
- Dip in laser power: pre-conditions ablation plasma
- Rise in laser power: launches strong shock

Preliminary experiments done at Omega and NIF

R.Scott et al., Physical Review Letters (2022)

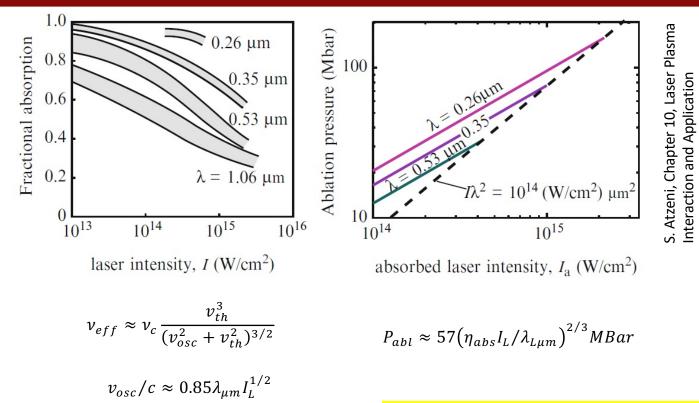
EXPERIMENTAL ROADMAP MOTIVATION

Physics issues to be understood:


- · Plasma production and characterization
- · Parametric instabilities in implosion-like and shock-ignition-like Laser-Plasma interaction;
 - ✓ Stimulated Brillouin Scattering (SBS)
 - ✓ Stimulated Raman Scattering (SRS), side SRS
 - ✓ Two Plasmon Decay
 - ✓ Cross-beam Energy Transfer (CBET)
 - ✓ Filamentation
 - ✓ Speckles from smoothing
- Hot electrons generation and their impact
- Acceptable degree of non uniformity in irradiation during compression / ignition phases
- Multiple beam irradiation
- Broadband and Chirped pulse irradiation
- Polar Direct Drive
- Hydrodynamics and Shock generation vs. Laser pulse profile
- Optimization of ablators for IFE targets
- Use of foam targets
- Diagnostics development including laser-driven secondary sources
- Comparison with advanced simulations tools (Hydro, PIC)

- Recap on ICF status
- Physics of laser-plasma interactions
- Experimental platforms and Roadmap
- HiPER+ programme outlook
- Summary

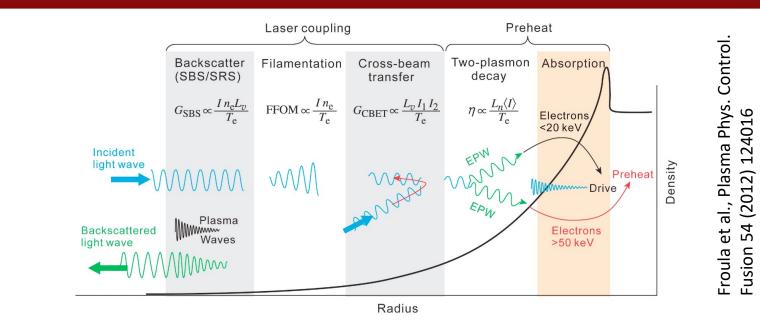
COLLISIONAL ABSORPTION



In a idealized ICF situation, laser light is absorbed by collisional absorption (inverse Bremsstrahlung) near the critical density surface $n_c(cm^{-3}) = 1.1 \cdot 10^{21} / \lambda_{\mu m}^2$ and successively the energy is transported to the ablation front, mainly via thermal electrons through the conduction zone.

$$n_c = \frac{m_e \omega^2}{4\pi e^2} \qquad (\omega_0 = \omega_p = 4\pi e^2 n_e / m_e) \qquad \frac{dI_L}{dz} = -k_{IB} I_L \qquad k_{IB} \propto \frac{Z(n_e / n_c)^2}{T_e^{3/2} (1 - n_e / n_c)^{1/2}}$$

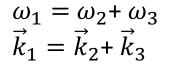
SHORTER WAVELENGTH IRRADIATION

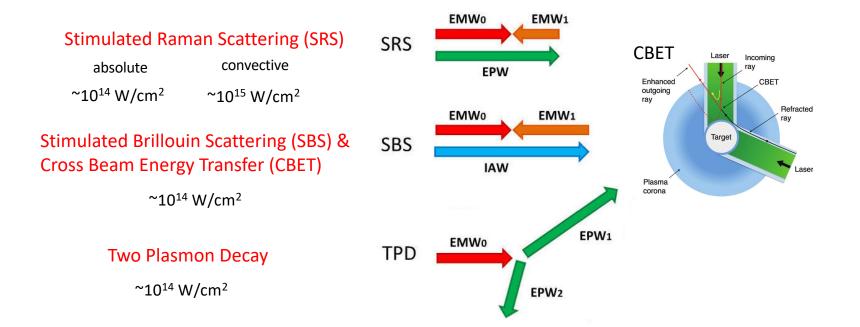

- At higher laser intensities the effective collision frequency I is reduced by quiver motion in laser field
- -> non-linear inverse Bremsstrahlung
- UV light is more efficiently absorbed because it propagates to higher densities

The ablation pressure obtained is larger for UV laser light due to a shorter conduction zone

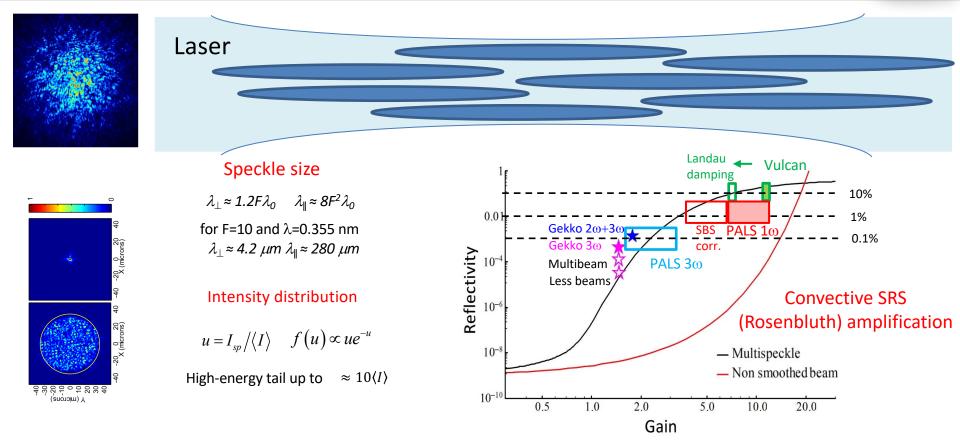
L.A.Gizzi, A.J.Mackinnon, D.Riley, S.M.Viana, O.Willi, *Measurements of thermal transport in plasmas produced by picosecond laser pulses*, Laser Part. Beams, **13** (1995).

LASER-PLASMA INTERACTION


In real ICF conditions, for $I\lambda_{\mu m}^2 > 10^{14} W cm^{-2}$, many «**non collisional**» mechanisms – or parametric instabilities - are driven in the plasma corona, producing:

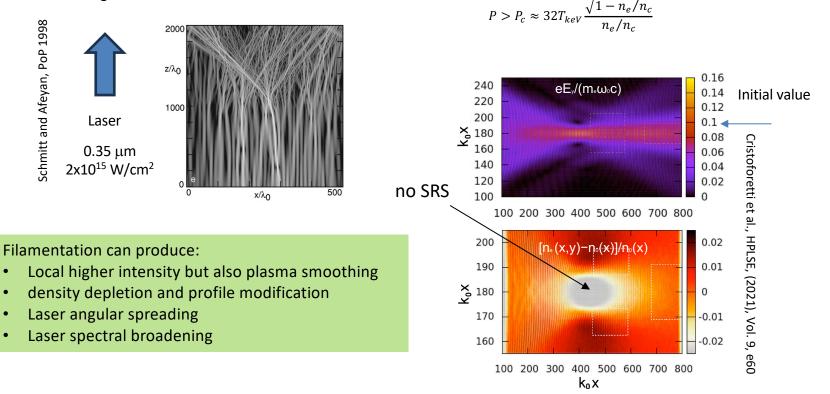

- the scattering of a significant percentage of laser energy (SRS, SBS)
- the unbalance of multiple laser beams irradiation (CBET)
- Small scale modulation of beam irradiation (filamentation)
- Suprathermal (or hot) electrons, produced by damping of SRS and TPD plasma waves, prehating the fuel

PARAMETRIC INSTABILITIES

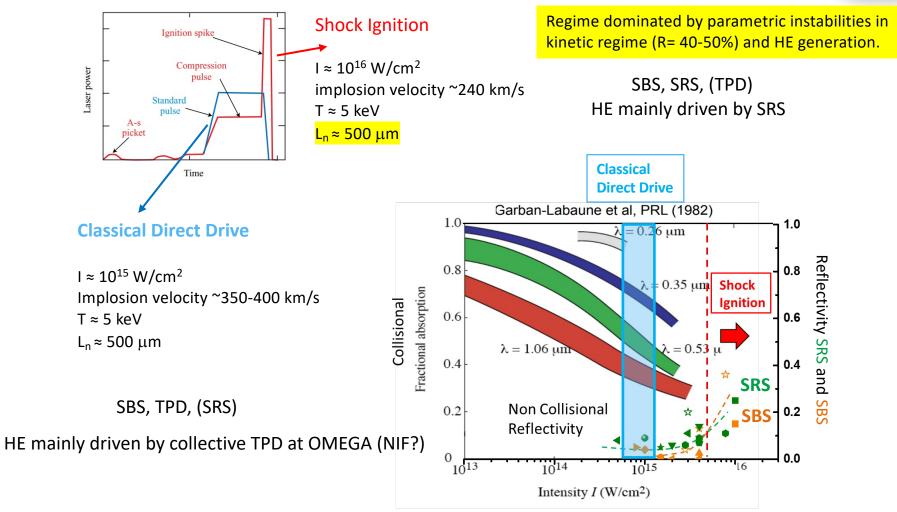

- Parametric Instabilities are 3-waves coupling processes where the e.m. laser excites ion-acoustic or electron plasma waves
- Thresholds are given by the damping of daughter waves
- In inhomogeneous plasmas, the threshold of convective instabilities depends on the resonance region $(\nabla n, \nabla v)$

BEAM SMOOTHING WITH PHASE PLATES

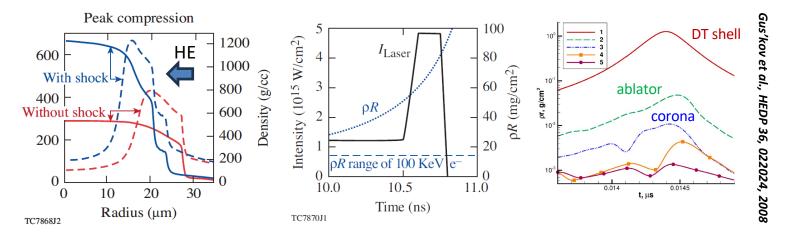
We need a multispeckle model, including local intensity and saturation

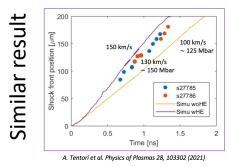

For more info see G. Cristoforetti et al., High Power Laser Science and Engineering, (2021), Vol. 9, e60

٠


Self focusing of laser light can amplify intensity perturbations and induce filamentation

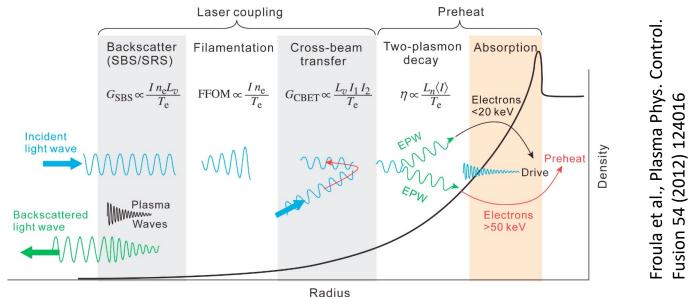
Thermal effects ightarrow the rise in temperature induces a hydrodynamic expansion which leads to an increase of the index of refraction **Ponderomotive effects** \rightarrow ponderomotive force pushes electrons away from the region where the laser beam is more intense, therefore increasing the refractive index




LPI: CLASSICAL DIRECT DRIVE VS. SHOCK IGNITION

Differently from classical Direct-Drive ICF, in Shock Ignition scheme the effect of hot electrons (HE) could be beneficial* increasing the ignitor pressure since electrons are expected to stop in the high- ρ R shell. e.g. for E_{hot} ≈ 80 keV \rightarrow range 0.01 g/cm²

*the positive effect is dominant for HE temperatures lower than 60 keV


It is important

- Characterize HE in conditions as much as possible close to SI
- Understand the source of HE (SRS, TPD, other)

Laser-Plasma Interaction of ignition pulse (10¹⁵-10¹⁶ W/cm²) is dominated by **parametric instabilities** including Stimulated Brillouin Scattering (SBS), Stimulated Raman Scattering (SRS) and Two Plasmon Decay (TPD) – and filamentation.

energy is backscattered by SRS/TPD and SBS (up to ~40-50%) - can increase laser energy requirements

SRS and TPD generate **fast electrons**, that can preheat the fuel and/or affect the shock pressure

Is it possible to turn off or limit the growth of LPI ? (Laser coherence manipulation, Broadband laser, comb diode lasers...)

One way of controlling or modifying instabilities consists in increasing the bandwidth, i.e. reducing the longitudinal coherence time of the driving laser pulse;

The role of bandwidth was extensively investigated in the past at implosion-like laser intensities (≈1E14) and large underdense plasmas, as temporal and spatial smoothing;

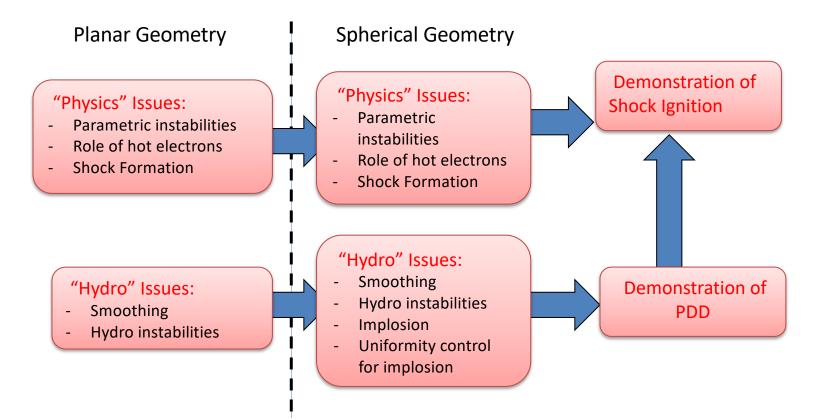
The ruling parameter in <u>homogeneus</u> plasmas is $\gamma_o /\Delta\omega_L$ where γ_o is the growth rate of the instability and $\Delta\omega_L$ is the laser bandwidth

J.J. Thomson and J.I.Karush, The Physics of Fluids **17**, 1608 (1974)

In <u>inhomogeneous</u> plasmas the effect is partially compensated by the broadening of the coupling region. P. N. Guzdar, et al., Phys. Fluids B **3**, 2882 (1991).

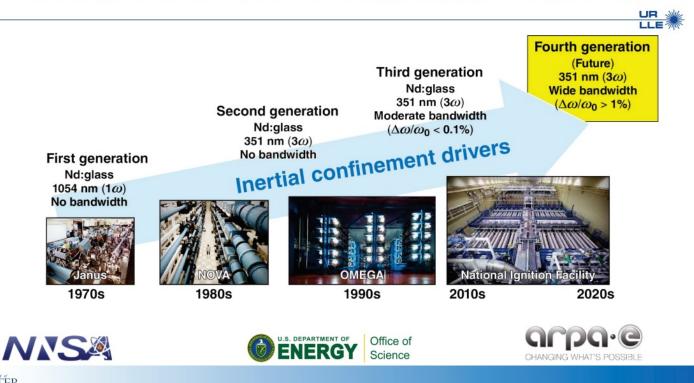
Bandwidth can still limit amplification gain of instabilities arising from filamentation seeded by laser speckles (RPP) and self-focusing. H. A. Rose, Phys. Plasmas 2, 2216 (1995).

Recent numerical simulation studies show universal scaling of the instability threshold intensity with the laser coherence time K. Follet et al., Phys. Plasmas 26, 062111 (2019);



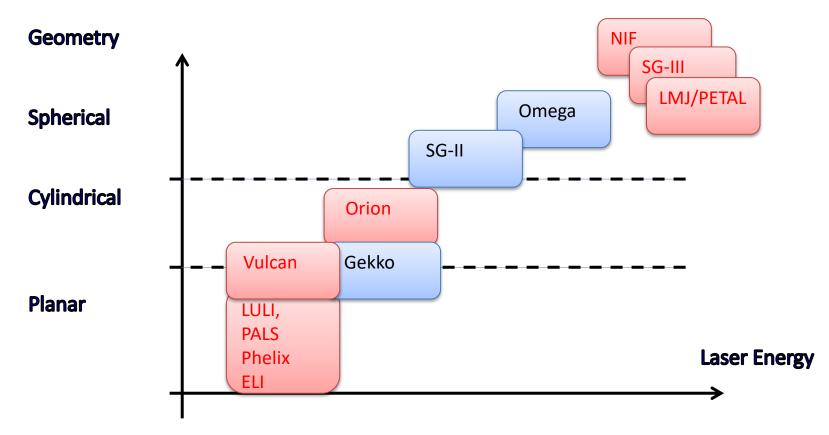
- Recap on ICF status
- Physics of laser-plasma interactions
- Experimental platforms and Roadmap
- HiPER+ programme outlook
- Summary

How to approach the final goal of "Performing shock ignition demonstration experiments"?


LASER FACILITIES

2020 ULTRAHIGH INTENS	b UMich OSU OXED ALLS AWE BNL LULI PU APOLL UDel CLUPS UMD LOA VICL VDel CLUPS UMD LOA VICL VDEL CLUPS UMD LOA VICL VDEL CLUPS	HZDR HU HU LLAMS APA APA PA BAPA GAP-Bio UMed PMII ILIL MPQ LNF LMU	IDE IDE IPPLM LC VULF VULF WU JIHT IAP XCE PNLI VILEF TAU WIS HUJ BARK TH INFLPR USZE	LS IHCE VNIITF IOP KQALS LFRC CAEP SWJTU FFR TIFR-H SJTU		ok REIPI GPI KyoU PSI
International Committee on Ultrahigh Intensity Lasers new dctld.org Inten new dctld.org Inte	File Op/Enterind Action Strategy of Joint Ann. Op/Enterind Action Strategy of Joint Comparison Com	E Control Learners, Instylute Charal Frigured EVE Learn Folds Amount Create at the CMP ELANG Learn Cold Amount Create at the CMP EVE Learner Cold Amount Create EVE Learner Cold Create EVE Learners (Instrument Related) ub- Mational lipelities fractility	Liber In Anima Periode Sector	A Decimar Scherreg of National Academy of National Academy of National Academy of National Academy of National Nati	Term Respire (Unrearly in SUP) VDP Ministry of Califyria, India (US) VDP Ministry of Califyria (US) VDP Ministry of Califyria	In page Calenta In Augusta Un Augusta Banata

FUTURE DEVELOPMENTS

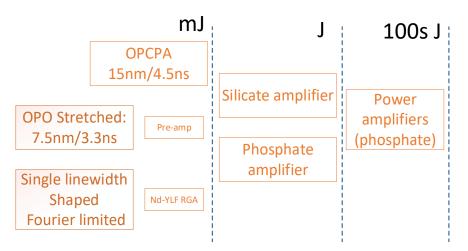

The Fourth-generation Laser for Ultrabroadband eXperiments

How to approach the final goal of "Performing shock ignition demonstration experiments" ?

LASERS FOR PLANAR STUDIES

	Multi beam	Lambda (nm)	Intensity (W/cm²)	Ιλ² (Wμm²/cm²)	L (μm)	T (keV)	Bandwidth / Chirp
GEKKO XII	YES	351	1.5x10 ¹⁵	2x10 ¹⁴	100	1-2	NO/NO
PALS	NO	438 1314	5x10 ¹⁵ 1.5x10 ¹⁶	1x10 ¹⁵ 2.5x10 ¹⁶	100 100	<mark>1-2</mark> 3-4	NO/NO
ELI-L4	NO	532	10 ¹⁴ - 10 ¹⁵	3x(10 ¹³ - 10 ¹⁴)	100	1	NO/YES
Vulcan	YES	532	1x10 ¹⁶	3x10 ¹⁵	400	1-2	NO/YES
LMJ	YES	351	3.5x10 ¹⁵	4.3x10 ¹⁴	480	4.5	NO/NO
$\overline{}$							

Different facilities can be used to investigate the role of different parameters


Shock Ignition regime Multibeam 3ω, I = 10¹⁶ W/cm² L=500 μm, T=3-5 keV

Lack of dedicated facility in Europe

6 MAIN BEAMS FOR PLASMA FORMATION AND HEATING, 2 BROADBAND (CHIRPED) BEAMS (7&8) FOR INTERACTION

BROADBAND BEAMS (1w, 1µm)

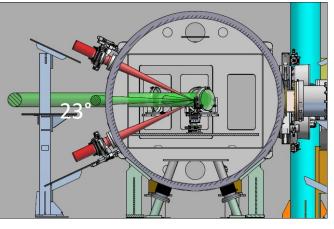
P. Oliveira, Vulcan, STFC

Pulse energy at 2ω ranging from 100 J to 300 J Interaction at SI intensity possible, but relatively small focal spot – hydro modelling needed to unfold

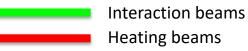
Option Beam 7 397 J @ 1ω	SHG Duration (ps)	SHG Bandwidth (nm)	SHG Energy (J)
Single linewidth	770	Fourier limited	325
OPO phosphate	682	0.77	266
OPO silicate	921	1	210
OPCPA Silicate	1100	1.77	227

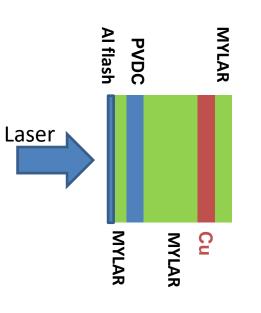
Option Beam 8 298 J at 1ω	SHG Duration (ps)	SHG Bandwidth (nm)	SHG Energy (J)
Single linewidth	760	Fourier limited	200
OPO phosphate	633	0.73	153
OPO silicate	882	1	112
OPCPA Silicate	900	1.7	123

VULCAN TAW EXPERIMENTAL SET UP

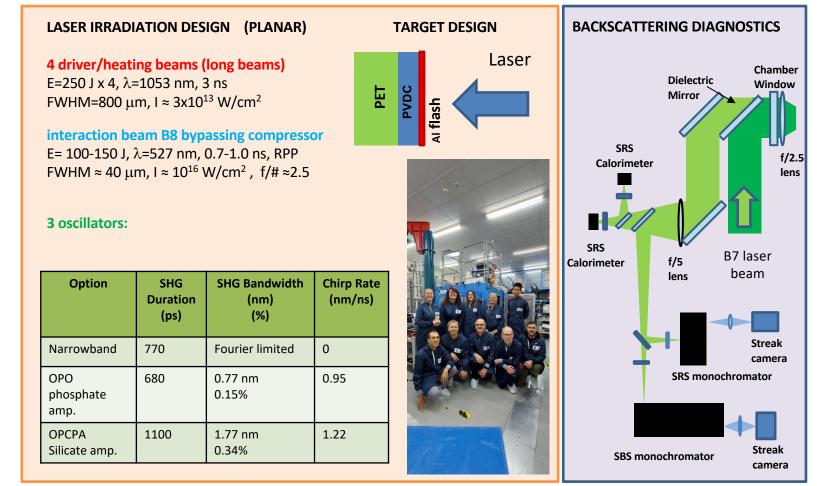

LASER IRRADIATION DESIGN (PLANAR GEOMETRY)

4 driver/heating beams (long beams)

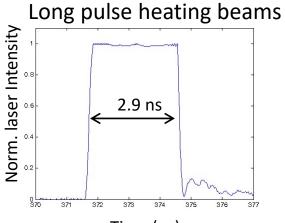

E=250 J x 4, λ =1053 nm, 3 ns FWHM=800 μ m, I \approx 3x10¹³ W/cm²


interaction beam B8 bypassing compressor

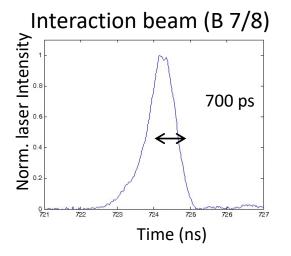
E≈85 J, λ=527 nm, 0.7 ns, RPP FWHM ≈ 40 μm, I ≈ 10¹⁶ W/cm² f/# ≈2.5


TARGET DESIGN

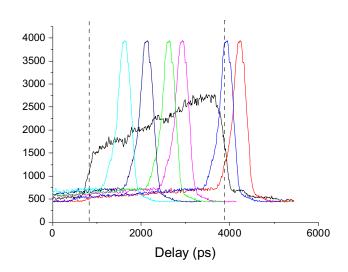
- Al flash
- Cl dopant for Te measurement
- Mylar layer for fast electron transport
- Cu for k-alpha measurement


VULCAN TAW EXPERIMENTS

INO-CNR (Italy), York Univ. and CLF (UK), Hellenic Mediterranean Univ. (Greece), Celia (France), Focused Energy



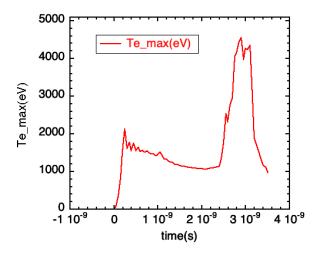
TIMING OF LASER PULSES



Time (ns)

- 4 driver beams F/#10
- RPP
- FWHM 800x570 μm
- λ= 1054 nm
- $\Delta t = 2.9 \text{ ns}$
- E_{tot} = 700-900 J
- $I = 3x10^{13} W/cm^2$

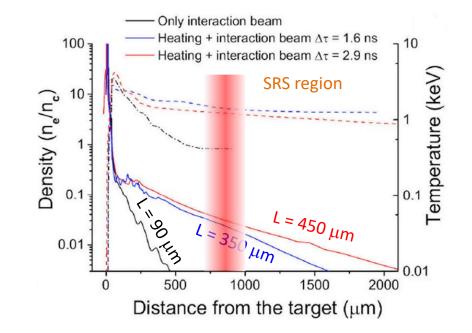
- Main beam F/#2.5
- RPP
- FWHM 24x30 μm
- λ= 527 nm
- $\Delta t = 700 \text{ ps}$
- E_{tot} = 40-100 J
- I = (0.5-1.3)x10¹⁶ W/cm²

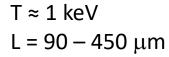


HYDRODYNAMIC SIMULATIONS

4 Driver beams + interaction beam @ 1E16 W/cm2, delay -300 in figure T_e ranges between 2 keV and 5 keV at the densities of interest for SRS (0.1 $\rm n_c$ < $\rm n_e$ < 0.25 $\rm n_c)$

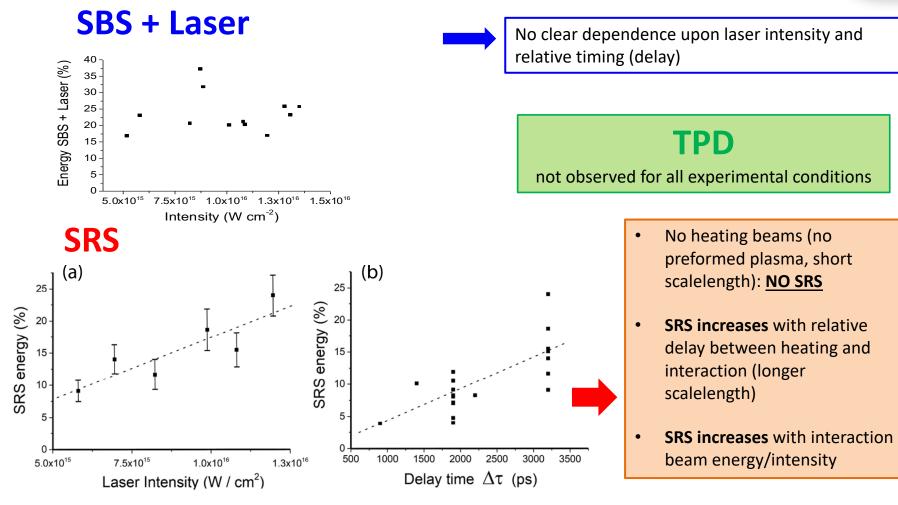
density scalelength L is in the range 300-1000 mm at the beginning of interaction



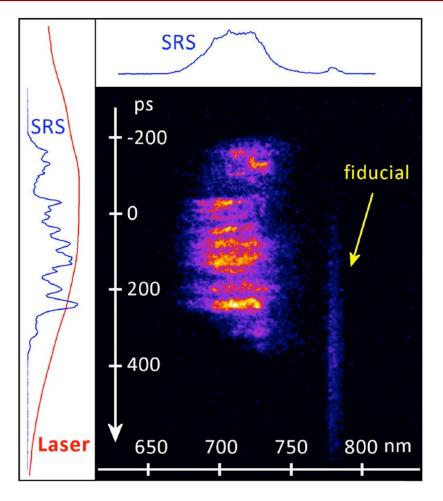

*S. Atzeni et al 2016 J. Phys.: Conf. Ser.688 012005

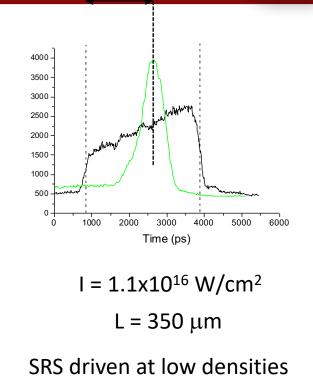
INTERACTION CONDITIONS - 1

DUED hydrodyamic simulations by. A. Schiavi and S. Atzeni

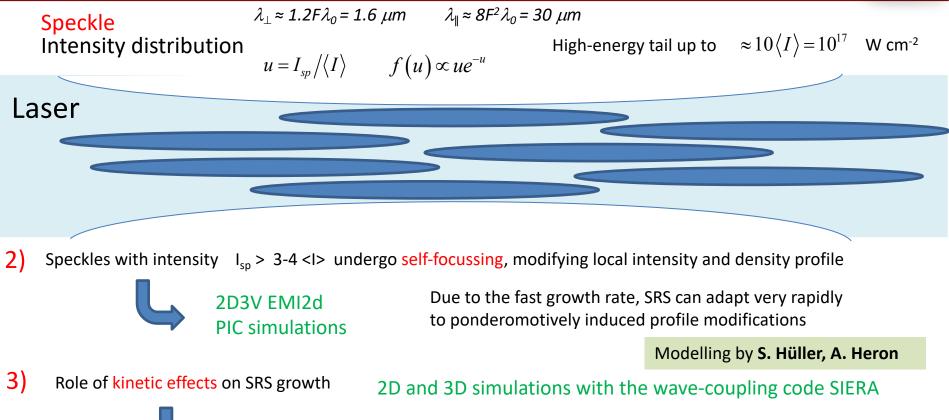


Depending on the delay of the main pulse




PARAMETRIC INSTABILITIES QUICK LOOK

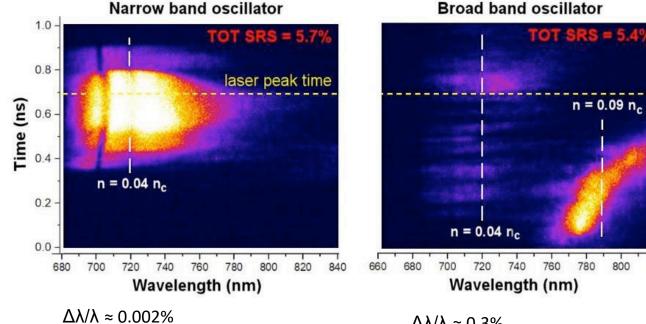
STIMULATED RAMAN SCATTERING



n = 0.03-0.07 n_c

 $k_{\rm e}\lambda_{\rm D}$ = 0.3-0.5 Strongly kinetic regime

LOCAL INTERACTION CONDITIONS (RPP)



- No effect on SRS growth at this high laser intensity
- Broadening of the scattered spectrum

G. Cristoforetti et al., High Power Laser Science and Engineering, (2021), Vol. 9, e60

NARROWBAND VS BROADBAND/CHIRPED

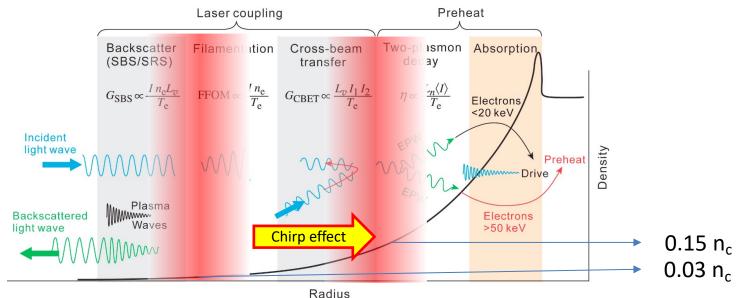
λ_{SRS}	n _e /n _c
710	0.033
820	0.1
900	0.15
950	0.18

Coherence time τ = 500 ps

- SRS driven in filaments at 0.05 nc ٠
- No TPD and SRS at higher ٠ densities, for pump depletion

 $\Delta\lambda/\lambda \approx 0.3\%$ Coherence time τ = 1 ps

- SRS is observed at higher densities
- SRS at lower densities strongly reduced

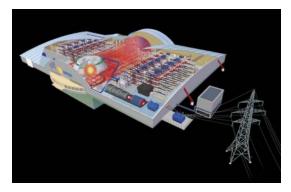

800

820

TPD spectral range not measured ٠

- In spite of the much higher intensity (>1E15) compared to earlier studies, a chirped bandwidth as small as 1 nm (0.2%) has a strong effect on LPI
- The coupling with *chirped-broadband* laser pulse moves to much higher density compared to narrowband laser pulse;
- As observed at lower (implosion-like) intensities, the bandwidth mainly acts on filamentation, limiting its growth and allowing laser light to propagate further;

- Multi-speckle modelling is needed to depict SRS growth (work in progress)
- In long scale plasmas and SI intensities, SRS is driven in filaments at low densities in strong kinetic regime and can reach 40-50% instantaneous reflectivities (In agreement with Baton et al., High Energy Density Physics 36, 100796, 2020);
- HE generated by SRS at these densities could have a low non-dangerous low temperature (here T = 10-15 keV), as measured in the experiment;
- TPD and high-density SRS is not observed, for pump depletion and plasma-induced smoothing after a few speckles layer (Scott et al., Phys. Rev. Lett. 127, 065001, 2021)
- This scenario may change completely for even modest bandwidth laser pulses due to the seeding of filamentation by RPP laser speckles.


- Recap on ICF status
- Physics of laser-plasma interactions
- Experimental platforms and Roadmap
- HiPER+ programme outlook
- Summary

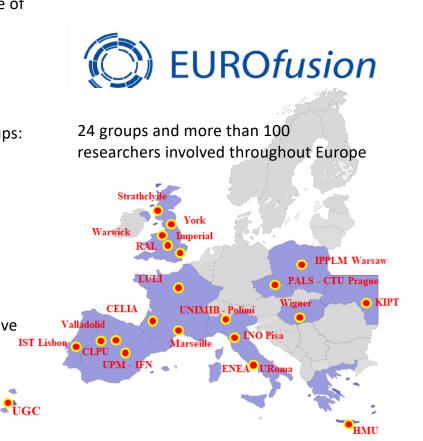
ON WHAT WE BUILD: THE EU IFE COMMUNITY

2005-2014 European Project "HIPER" (High Power Laser Energy Research Facility)

HiPER, conceived as a large-scale laser system designed to demonstrate significant energy production form ICF, was listed on the ESFRI large scale facility roadmap and awarded preparatory phase funding (~2 M€) by the EU with additional funding from STFC, UK, and the Ministry of Education, Czech Republic, and work in-kind from many other partners

The project was based on the assumption that NIF would ignite during the National ignition Campaign (2009-2012)

ON WHAT WE BUILD: THE EU IFE COMMUNITY


COST Action MP1208 «Developing the Physics and the Scientific Community for Inertial Fusion at the time of NIF ignition» 2013-2017

Laserlab Europe AISBL supports 3 ICF-related groups: Expert group in ICF/IFE Expert group in micro-structured materials Expert group in laser-generated EMP

EUROFusion within Enabling Research projects EUROFusion supports projects related to direct-drive and shock ignition at the level of $\sim 300 \ k \in$ /year (2017-2024)

THE HIPER+ PROGRAMME

High Power Laser Science and Engineering, (2023), Vol. 11, e83, 31 pages. doi:10.1017/hpl.2023.80

REVIEW

Future for inertial-fusion energy in Europe: a roadmap

Dimitri Batani¹, Arnaud Colaïtis¹, Fabrizio Consoli¹, Colin N. Danson^{3,4}, Leonida Antonio Gizzi¹, Javier Honrubia⁶, Thomas Kühl⁷, Sebastien Le Pape⁸, Jean-Luc Miquel⁹, Jose Manuel Perlado¹⁰, R. H. H. Scott¹¹, Michael Tatarakis^{12,13}, Vladimir Tikhonchuk^{1,14}, and Luca Volpe^{6,15}

Conceptual Development: HORIZON-INFRA-2024-DEV-01-01: Research infrastructure concept development, Deadline March 2024

HIGH POWER LASER SCIENCE AND ENGINEERING

> FUTURE FOR INERTIAL FUSION ENERGY IN EUROPE: A ROADMAP

> > HIPER

On the prospect of the establishment of a new European program on Inertial Fusion Energy (IFE) with the mission to demonstrate laser-driven ignition in the direct drive scheme and to develop pathway technologies for a commercial fusion reactor.

Article accepted for publication: High Power Laser Science and Engineering, 2023

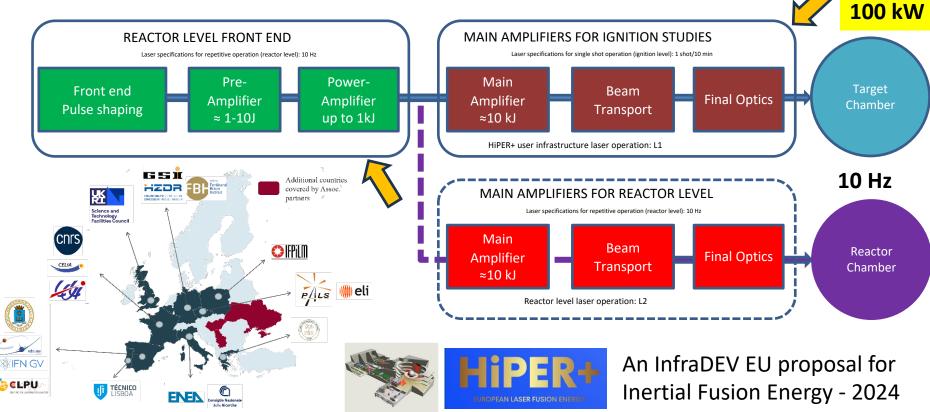
CHALLENGE 1: LASER

- Today's laser efficiency (electricity to laser energy) is < 1%
- NIF, LMJ, SG-III can fire typically 1 shot/day
- They use 350 nm light (near UV, 3 ω of Nd:glass lasers)

In order to think about a reactor, we need:

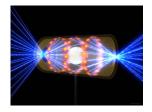
- Develop more efficient laser (≥ 10%)
- Develop high repetition frequency laser (10 Hz)
- Think about the possibility of using 2ω light (532 nm) to reduce damage to optics
- Develop broadband lasers (to quench parametric instabilities)

Possible by using diode pump lasers (efficiency up to 20% but not yet demonstrated with high energy systems)


Today, laser systems like L4n at ELI-beamlines already offer higher repetition rate (\approx 1 shot /min) and larger bandwidth...

HiPER+ LASER CONCEPT FOR IFE

SINGLE LASER BEAMLINE BLOCK DIAGRAM

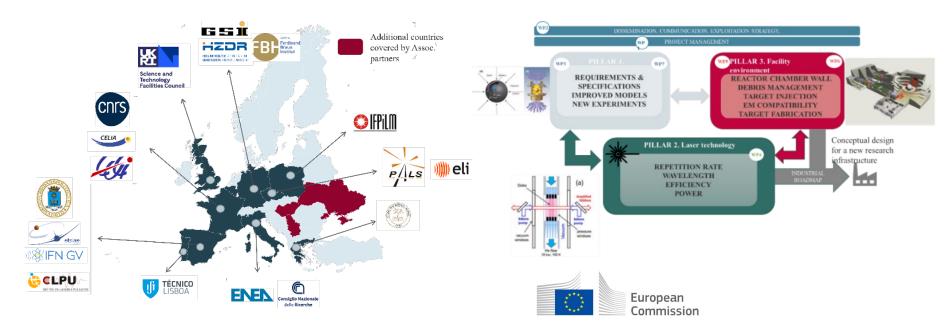


- They require many days of preparation and characterization
- They need $\approx\,$ hour to be inserted in the chamber and properly aligned

In order to think about a reactor, we need:

- Develop cheap technology (< 1\$/target)
- Develop capability of mass production of targets
- Develop techniques for target injection and alignment at $\approx 1 \text{ Hz}$
- Design of the target insertion and tracking system

All this does NOT seem possible with indirect drive !!



- Problems of tritium breeding and handling system
- Problems of activation of materials. Identification of adequate materials for chamber construction and protection.
- Development of a laser-based neutron source. Testing materials in pulsed regime.
- Resolving security and safety issues.
- Facing the problem of huge EMP
- Development of remote handling techniques
- Cooling system and energy recovery system. Systems for material control, replacement and refurbishing

Many of these issues are common to MCF too (synergies possible)

HiPER+ RESEARCH INFRASTRUCTURE APPROACH*

*European proposal (Infradev Horizon Europe Call 2024)

Consortium

INFRADEV: Developing, consolidating and optimising the European research infrastructures landscape, maintaining global leadership

Main blocks

HiPER+ TIMELINE

3 major steps of 10 years each: produce knowledge, build the machine, produce and analyze results for the technology transfer

Synergies with companies and national projects could somewhat accelerate this time scale...

Major axes of research & technology development

A: physics & technology for IFE	B: development of IFE laser	C: material science & reactor	D: development of community,
	technology	technology	coordination & management

For comparison: NIF high gain reached in 2028 LMJ full operation at 1.3 MJ expected in 2027 First plasma in ITER expected not before ~2025

- Inertial fusion ignition achieved
- Possible pathway: direct drive and shock ignition
- Facility needed to develop the EU experimental programme
- HiPER+ programme is a unique EU platform for IFE