CKM & CPV in kaon and light flavour: status and prospects

Ilaria Rosa

November 12nd 2024

WIFAI 2024, Bologna

CKM matrix and first row unitarity

 $-\frac{g}{\sqrt{2}}(\bar{u}_L,\bar{c}_L,\bar{t}_L)\gamma$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Separate class of precision tests

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1$$

$$\approx 2 \times 10^{-5}$$
 V_{us}

$$\gamma^{\mu}W^{+}_{\mu}V_{CKM}\begin{pmatrix} d_{L} \\ s_{L} \\ b_{L} \end{pmatrix} + h \cdot c \cdot b_{L}$$

$$\Delta_{CKM}^{u} = |V_{ud}|^2 + |V_{us}|^2 - 1$$

and V_{ud} are the most accurately known elements of the CKM matrix

CKM first row as probe for new physics

Universality → Is G_F from the μ decay equal to G_F from K, π and nuclear β decay?

$$|V_{ud}|^2 + |V_{us}|^2 = 1 + O\left(\frac{(M_W^2/g^2)}{\Lambda^2}\right)$$
 BSM eff
(M_W^2

CKM in Kaon sector

Kaon semileptonic decays K_{P3}

Master formula

$\Gamma(K \to \pi \ell \nu(\gamma)) = \frac{G_F^2 M_K^5 C_K^2}{192 \pi^3} |V_{us}|^2 S_{EW} |f_+^{K\pi}(0)$

From theory

Isospin factor

 C_{K}

 S_{EW} Short distance electroweak RCs $f_+^{K\pi}(0)$

 $\delta^{K\ell}_{EM}$

 $\delta_{SU(2)}$

SU(2) symmetry breaking

 $K\pi$ form factor at t = 0

Long-distance electromagnetic RC

From experiments

$$\Gamma(K \to \pi \ell \nu(\gamma))$$

Rates with well-determined treatment of radiative decays:

- K_S, K_L, K^+ BR
- *K* lifetime

Integral of form factor over phase-space.

KLOE/KLOE-2 measurement of $\mathscr{B}(K_S \to \pi \ell \nu)$

Da ϕ ne is a phi-factory: $e^+e^- \rightarrow \phi \rightarrow K_S K_L$

- First measurement of $\mathscr{B}(K_S \to \pi \mu \nu) = (4.56 \pm 0.20) \times 10^{-4}$, based on 1.6 fb⁻¹ • Percent result $\mathscr{D}(K \to \pi \mu) = (7.152 \pm 0.027 \pm 0.044) \times 10^{-4}$ based on
- Recent result $\mathscr{B}(K_S \to \pi e\nu) = (7.153 \pm 0.037_{stat} \pm 0.044_{styst}) \times 10^{-4}$, based on 1.6 + 0.4 fb⁻¹

- Select signal with kinematic BDT and ToF $\pi \ell$ assignment
- Fit to $m_{\ell} = (E_{K_S} E_{\pi} p_{miss})^2 p_{\ell}^2$
- $K_S \rightarrow \pi^+ \pi^-$ as normalisation channel

 $(10^{-4}, based on 1.6 fb^{-1})$ PRLB 804 (2024) $(4_{styst}) \times 10^{-4}, based on 1.6 + 0.4 fb^{-1}$ JHEP02(2023)098

$V_{\mu S} | f_+(0)$ and $f_+(0)$ from world data

Average: $|V_{\mu s}| f_{+}(0) = 0.21656(35) \quad \chi^2 / ndf = 1.89 / 5(86\%)$

Kaon/pion leptonic decay $(K_{\mu 2}/\pi_{\mu 2})$

$$\left[\frac{|V_{us}|f_{K^+}}{|V_{ud}|f_{\pi^+}} = \left[\frac{\Gamma_{K_{\mu 2}}M_{\pi^+}}{\Gamma_{\pi_{\mu 2}}M_{K^+}}\right]^{1/2} \frac{1 - m_{\mu}^2/M_{\pi^+}^2}{1 - m_{\mu}^2/M_{K^+}^2} (1 - \delta_{EM}/2 - \delta_{SU(2)}/2)\right]$$

From theory

 f_K / f_{π} K^+/π^+ decay constants

Long-distance electromagnetic RC

 $\delta_{SU(2)}$

Strong isospin breaking

Kmu2 BR dominated by one measurement (KLOE) Km3/Kmu2 BR measurement at 0.2% would have significant impact

From experiments

 $\Gamma(K_{\mu 2}), \Gamma(\pi_{\mu 2})$

Rates with well-determined treatment of radiative decays:

• Branching ratios $\mathscr{B}(K_{\mu 2}), \mathscr{B}(\pi_{\mu 2})$ and lifetimes

 $au_{K^{\pm}}, au_{\pi^{\pm}}$

- Use K^{\pm} info from fits
- Use π^{\pm} info from PDG

Need to reduce the impact of the theoretical input in the error budget

Unitarity tests ingredients

From $K_{\ell 3}$

 $|V_{us}| = 0.22330(35)_{exp}(39)_{LAT}(8)_{RC+IB}(53)_{TOT}$

From $K_{\mu 2}$

$$\frac{|V_{us}|}{|V_{ud}|} = 0.23108(23)_{exp}(42)_{LAT}(16)_{RC+IB}(51)_{TOT}$$

(*) Not included in the talk

$$\Delta_{CKM}^{(1)} = |V_{ud}|_{\beta}^{2} + |V_{us}|_{K_{\ell^{3}}}^{2} - 1$$

$$\Delta_{CKM}^{(2)} = |V_{ud}|_{\beta}^{2} \left(\frac{1}{|V_{us}/V_{ud}|_{K_{\mu 2}}^{2}} + 1 \right) - 1$$

$$\Delta_{CKM}^{(3)} = |V_{us}|_{K_{\ell^3}}^2 \left(\frac{1}{|V_{us}/V_{ud}|_{K_{\mu^2}}^2} + 1 \right) - 1$$

 $\Delta_{CKM}^{(2)} = -0.00098(58)$ $\Delta_{CKM}^{(3)} = -0.0164(63)$ $\Delta_{CKM}^{(1)} = -0.00176(56)$ -2.6σ discrepancy -1.7σ discrepancy -3.1σ discrepancy

Multiple ways of testing unitarity

10

Cabibbo universality and BSM physics

$$\Delta_{CKM}^{(1)} = 2\epsilon_R + 2\Delta\epsilon_R |V_{us}|^2$$
$$\Delta_{CKM}^{(2)} = 2\epsilon_R - 2\Delta\epsilon_R |V_{us}|^2$$
$$\Delta_{CKM}^{(3)} = 2\epsilon_R + 2\Delta\epsilon_R (2 - |V_{us}|^2)$$

From current fit

$$\epsilon_R = -0.69(27) \times 10^{-3}$$

 $\Delta \epsilon_R = -3.9(1.6) \times 10^{-3}$

Zero hypothesis excluded with 3.1σ significance

11

CKM future in the Kaon/pion panorama

Proposed measurement

$$R_{K_{\mu3}/K_{\mu2}} = \frac{\mathscr{B}(K^+ \to \pi^0 \mu^+ \nu)}{\mathscr{B}(K^+ \to \mu^+ \nu)}$$

Impact of the measurement

$$(R_{K_{u3}/K_{u2}})^{-1/2} \propto 1 - 2\Delta\epsilon_R$$

sensitive search for RH currents

Why NA62 is suitable?

- Only running experiment on K^+ physics
- Good control of systematics
- Single analysis framework

Urgent need for additional information on the compatibility of $K_{\ell 2}$ and $K_{\ell 3}$ data

Competitive with only 2 weeks of data taking

NA62 and CKM 1st row: many opportunities

NA62 can perform a suite of measurements of common kaon decays

Inputs vs fit results for K⁺

• Add several new ratios to over-constrain fits with good control of systematics • Use single analysis framework, data-set to maximise systematics cancellations

Strategy

select single positively charged tracks for measuring all decays

- Reduced systematics by using of minimum bias trigger with no PID
- Cleaner environment with higher statistics by taking lowintensity run without downscaling

NA62 low intensity operation

Why NA62 is suitable?

- Only running experiment on K^+ physics
- Good control of systematics
- Single analysis framework

Intensity

1.4 avg intensity (1.8% of standard intensity, 1.3% of nominal max intensity)

Total T10 POT collected: 2.6212e+15

Trigger stream

Minimum Bias trigger arrangement:

- CTRL: CHOD, D=50
- Mask2: L0: NewCHOD(Q1) ; L1: STRAW_OneTrack , D = 1
- Physics trigger reference detector = NewCHOD
- L1 does NOT contain KTAG

NA62 2024 Low Intensity

Competitive with only 2 weeks of data taking

Pion beta decay: $\pi^+ \rightarrow \pi^0 e^+ \nu_e$

Master formula

$$\Gamma(\pi^+ \to \pi^0 e^+ \nu_e(\gamma)) = \frac{G_F^2 |V_{ud}|^2 M_{\pi^\pm}^5 |f_+^{\pi}(0)|^2}{64\pi^3} (64\pi^3)$$

• PIBETA 2004 extracted $|V_{ud}|$ measuring the $\pi^+ \rightarrow \pi^0 e^+ \nu_e$ branching ratio with $\pm 0.6\%$ precision

$$|V_{ud}| = 0.9739(27) \left[\frac{\mathscr{B}(\pi^+ \to e^+ \nu_e(\gamma))}{1.2325 \times 10^{-4}} \right]$$

D. Pocanic et al., Phys. Rev. Lett. 93, 181803 (2004), [hep-ex/0312030]

Theory is in great shape (0.3% total error on V_{ud})

$$|V_{ud}| = 0.97386(28)$$

- Clear theoretically
- Challenging experimentally

Normalised using the very precise measured $\mathscr{B}(\pi^+ \to e^+ \nu_e(\gamma)) = 1.2325(23) \times 10^{-4}$

W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 71, 3629 (1993)

 $(51)_{BR}(9)_{\tau_{\pi}}(14)_{RC}(28)_{I_{\pi}}[283]_{total}$

Experiment needs order of magnitude improvement in precision to be competitive

PIONEER: a next-generation pion decay experiment

Physics programme

What is **PIONEER?** [Proposal]

- ► PSI experiment
- intense pion beam + active target
- Tracker and LXe calorimeter

Data taking will start in about 5 yrs

Phase 1

$$R^{\pi}_{\mu/e} = \frac{\Gamma(\pi \to \mu\nu(\gamma)))}{\Gamma(\pi \to e\nu(\gamma))}$$

 $\mathscr{B}r(\pi^+ \to \pi^0 e^+ \nu)$

- Experimental precision improvement by a factor of 15 to 0.01% level
- NP at the PeV scale can be probed

Phase 2 (high intensity π^+ beam)

- Improve the precision by three times
- CKM matrix unitary check \rightarrow 10 times improvement in Phase III (theoretically cleanest |Vud| test)

The Cabibbo angle is the cornerstone of the CKM matrix and the Cabibbo universality test is a precision tool to explore what may lie beyond the Standard Model

However...

- **Experiment:** neutron, K, π , τ
- Theory: lattice QCD+QED for neutron, K, π ; EFT+ 'ab-initio' methods for nuclei

Ongoing experimental and theoretical efforts promise exciting developments

Conclusions

Need for experimental and theoretical investigations! Progress is expected on multiple fronts:

Fits to K_I and K^{\pm} rate data : input data vs fit

Master formula

 $\Gamma(K \to \pi \ell \nu(\gamma)) = \frac{G_F^2 M_K^5 C_K^5}{192 \pi^3} |V_{us}|^2 S_{EW} |f_+^{K^0 \pi^-}(0)|^2 I_{K\ell}^{(0)} \left(1 + \delta_{EM}^{K\ell} + \delta_{SU(2)}^{K\pi}\right)$

K _L e3	0.2162(5)
<i>К_Lµ</i> 3	0.2165(6)
K _S e3	0.2169(8)
K _S µ3	0.2125(47)
K [±] e3	0.2169(6)
K [±] μ3	0.2168(10)

Error budget in $|V_{us}| f_+(0)$

% err	Approx. contrib. to % ϵ BR τ Δ			r from: Int
0.23	0.09	0.20	0.02	0.05
0.26	0.15	0.18	0.02	0.07
0.39	0.38	0.02	0.02	0.05
2.2	2.2	0.02	0.02	0.08
0.30	0.27	0.06	0.11	0.05
0.47	0.45	0.06	0.11	0.08

Phase space factor

$$I_{K\ell}^{(0)} = \int_{m_{\ell}^2}^{(M_K^2 - M_{\pi}^2)^2} \frac{dt}{M_K^8} \bar{\lambda}^{3/2} \left(1 + \frac{m_{\ell}^2}{2t}\right) \left(1$$

$$\tilde{f}_{+}(t) = \exp\left[\frac{t}{m_{\pi}^{2}}\left(\Lambda_{+} - H(t)\right)\right]$$
$$\tilde{f}_{0}(t) = \exp\left[\frac{t}{m_{K}^{2} - m_{\pi}^{2}}\left(\ln C - G(t)\right)\right]$$

K_{ℓ^3} form factors

 $-\frac{m_{\ell}^{2}}{t}\bigg)^{2}\left[f_{+}^{2}(t) + \frac{3m_{\ell}^{2}\Delta_{K\pi}^{2}}{(2t+m_{\ell}^{2})\bar{\lambda}}f_{0}^{2}(t)\right]$

NA48 K_{e3} data included in fits but not shown

2	010 fit Current			rent
$\Lambda_+ imes 10^3$	=	25	.55 =	± 0.38
ln C	=	0.1	992	(78)
$\rho(\Lambda_+, \ln C)$	=	-0	.110	
χ²/ndf	=	7.5	6/7 (3	8%)

	-
Mode	Update
K^{0}_{e3}	0.15470(15)
K^{+}_{e3}	0.15915(15)
$K^{0}_{\ \mu 3}$	0.10247(15)
$K^{+}_{\ \mu 3}$	0.10553(16)
CKM	21 M. Moulson

Right handed currents

Find set of ϵ 's so that Vud and Vus bands meet on the unitarity circle

RH (V+A) quark currents

• CKM elements from vector(axial) channels are shifted by $1 - \epsilon_R (1 + \epsilon_R)$ • $V_{\mu s}/V_{\mu d}$, $V_{\mu d}$ and $V_{\mu s}$ shift in correlated way

Tensions in the $V_{ud} - V_{us}$ plane

 $\Delta_{CKM}^{u} = |V_{ud}|^2 + |V_{us}|^2 - 1$

Global fit 2.8 σ discrepancy

A little bit of history

- Until ~2018, bands did intersect in the same region on the unitarity circle (< 2σ)
- Main changes since then:
 - V_{ud} decreased (radiative corrections in nuclear & neutron increased with smaller uncertainty, dispersive)
 - V_{us} from $K_{\ell 3}$ decreased (< V > increased with smaller uncertainty, 2+1+1 lattice QCD)

24

A little bit of history

$$\leftarrow V_{ud} (0^+ \rightarrow 0^+)$$

$$\leftarrow fit with unitarity$$

$$= 0.976$$

$$V_{ud}$$

A Kaon factory at CERN

Timeline of the NA62 Experiment:

2009-2014 Detector R&D Installation

Beam from the SPS: 400 GeV/c protons on Be target
 Secondary 75 GeV/c beam hadrons (70% π, 24% p and 6% K)
 Decay in flight: Kaons decay in a 60 meters long volume

The main aim of NA62 is to study the FCNC process $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Theory [arXiv:2109.11032] $\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.60 \pm 0.42) \times 10^{-11}$

NA62 [JHEPO6 (2021) 093] $\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (10.4^{+4.0}_{-3.4 \, stat} \pm 0.9_{syst}) \times 10^{-11}$

Performances

- GTK-KTAG-RICH time resolution $\mathcal{O}(100 \, ps)$
- $\mathcal{O}(10^4)$ background suppression from kinematics
- $\mathcal{O}(10^7)$ muon rejection for $15 < p(\pi^+) < 35 \ GeV$
- $\mathcal{O}(10^8)$ **T** rejection for $E(\pi^0) > 40 \, GeV$

NA62 detector

Resolution

- → Spectrometer $\sigma_p/p = (0.30 \oplus 0.005 \times p) \%$ [GeV/c]
- CHOD and NewCHOD resolution of 600 and 200 ps
- $\Rightarrow \text{ LKr } \sigma_E / E = (4.8 / \sqrt{E} \oplus 11 / E \oplus 0.9) \% \text{ [GeV]}$

