

Status and perspective of CPV and CKM measurements at ATLAS and CMS

Enrico Lusiani^a on behalf of ATLAS and CMS Collaborations ^a INFN Padova

Third Italian Workshop on the Physics at High Intensity, 12/11/2024

CP violation in the SM

- In the SM quark transitions are possible through flavor-changing weak interactions
- Information about the strength of the transition is contained in the Cabibbo-Kobayashi-Maskawa (CKM) matrix
 - Parameters: 3 angles + 1 complex phase
- The single complex phase allows for CP violation
- In the SM, the CKM matrix is unitary
 - Unitary conditions can be represented by "unitary triangles"

Search for CP violation in $D^0 \rightarrow K_s K_s$

CMS: arXiv:2405.11606

Dataset: 2018 B Parking (41 fb⁻¹)

Motivations

- CP violation in the up-quark sector is not studied as well as in the down-quark one
 - Expected to be suppressed by the GIM mechanism and CKM element size
- Observation of a significant CPV → hints of BSM physics
 - First observation of CPV in D mesons in 2019 by LHCb with $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ decays [PRL122(2019)211803]
- Presented here: measurement of the direct CPV in

 $D^0 \rightarrow K_s K_s$ decays

$$A_{CP} = \frac{\Gamma(D^0 \to K^0_S K^0_S) - \Gamma(\overline{D}^0 \to K^0_S K^0_S)}{\Gamma(D^0 \to K^0_S K^0_S) + \Gamma(\overline{D}^0 \to K^0_S K^0_S)}$$

• From theory, CPV in $D^0 \rightarrow K_S K_S$ could be as large as O(1%)[PRD92(2015)054036]

W exchange diagram for D⁰

Measurement strategy

- Use D⁰ from D^{*+} \rightarrow D⁰ π^+ and D^{*-} \rightarrow D⁰ π^- , so that the pion charge tags the D⁰ flavor
- This introduces additional asymmetries due to the D*+/D*- differences in the measurement

 $\Delta A_{CP} = A_{raw}(D^{\circ}
ightarrow K_{S}K_{S}) - A_{raw}(D^{\circ}
ightarrow K_{S}\pi^{+}\pi^{-}$

A_{CP} extraction

To extract the CP asymmetry a **2D maximum-likelihood fit is** performed on the invariant mass of the D*+ and D⁰

- Fit is done simultaneously on the D*+ and D*- samples with only the yields left to float
- Main fit components (signal channel):
 - \circ D⁰ x D^{*+}, the signal component
 - \circ D⁰ x *bkg*, real D⁰ but fake D^{*+}
 - *bkg* x *bkg*, background in both dimensions
- Notable selections: m(π⁺π⁻) ∈ PDG ± 20 MeV, m(K_sK_s) ∈ [1.7,2.0] GeV, displaced by >9(2)σ in xyz(xy)
- **Background suppression:** fit alternative topologies, select based on vertex probabilities
- Yields:

Reference channel

Pion charge	Ν
π^+	944800 ± 3500
π^-	930150 ± 3400

Signal channel

Pion charge	N
π^+	1095 ± 46
π^-	951 ± 44

Systematic uncertainties

Source	Uncertainty, %
$m(D\pi^{\pm})$ signal model	0.10
$m(D\pi^{\pm})$ background model	0.02
$m(K_{S}^{0}K_{S}^{0})$ signal model	0.04
$m(K_{S}^{0}K_{S}^{0})$ background model	0.02
$m(K_{S}^{0}K_{S}^{0})$ fit range	0.04
Reweighting	0.09
ΔA_{CP} in MC	0.13
Total	0.20

Results and outlook

• Putting everything together, ΔA_{CP} is measured

 $\Delta A_{CP} = 6.3 \pm 3.0 \, (\text{stat}) \pm 0.2 \, (\text{syst}) \, \%$

• Using the world-average value of $A_{CP}(K_S \pi^+\pi^-) = (-0.1 \pm 0.8)\%$, $A_{CP}(K_S K_S)$ is found to be

 $A_{CP}(D^0 o K^0_S \, K^0_S) = 6.2 \pm 3.0 \, (ext{stat}) \pm 0.2 \, (ext{syst}) \pm 0.8 (A_{CP}(K^0_S \, \pi^+ \pi^-)) \, \%$

- Consistent with no CP violation at 2σ , with LHCb [PRD104(2021)L031102] [(-3.1 ± 1.3)%] at 2.7 σ and Belle [PRL119(2017)171801] [(0.0 ± 1.5)%] at 1.8 σ
- This is the first CMS study of CP violation in the charm sector, paving the way for future measurements using
 - More data
 - Refined techniques
 - Different channels

Measurement of the time-dependent CP violation in B_s mesons

CMS: CMS PAS BPH-23-004

ATLAS: EPJC81(2021)342

Dataset: CMS: 2017-18 (96 fb⁻¹) ATLAS: 2015-17 (80 fb⁻¹)

Motivations

- B_s mesons decays allow us to study the time-dependent CP violation generated by the interference between direct decays and flavor mixing
- The weak phase ϕ_s is the main CPV observable
 - Predicted by the SM to be $\phi_s \approx -2\beta_s = -37 \pm 1 \text{ mrad } (\underline{\text{[CKMfitter, UTfit]}})$
 - $\beta_s \rightarrow$ angle of the B_s unit. triangle
- New physics can change the value of ϕ_s up to ~100% via new particles contributing to the flavor oscillations [RMP88(2016)045002]

- ϕ_s has been first measured by the **Tevatron** experiments D0 and CDF
- At LHC $\varphi_{_{\rm S}}$ has been measured several times by ATLAS, LHCb, and CMS
- This presentation is about the measurements in the *golden* channel
 - $\mathsf{B}_{_{\mathrm{S}}} \twoheadrightarrow \mathsf{J}/\psi \ \varphi(1020) \twoheadrightarrow \mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -} \mathsf{K}^{\scriptscriptstyle +}\mathsf{K}^{\scriptscriptstyle -}$
 - **CMS:** 96.4 fb⁻¹ 2017 18 + 19.7 fb⁻¹ Run1
 - **ATLAS:** 80 fb⁻¹ 2015 17 + 19.2 fb⁻¹ Run1
 - 60 fb⁻¹ from 2018 to be added

9

A time-, flavor- and angular-dependent measurement

- **Time-dependent angular analysis** to separate the CP eigenstates ("transversity basis" used)
- Time-dependent flavor analysis to resolve the B_s mixing oscillations (T ~ 350 fs, CMS/ATLAS $\sigma_t \sim 65$ fs)

sensistivity
$$\propto \sqrt{rac{\epsilon_{\mathsf{tag}} \mathcal{D}_{\mathsf{tag}}^2 \mathcal{N}_{\mathsf{sig}}}{2}} \sqrt{rac{\mathcal{N}_{\mathsf{sig}}}{\mathcal{N}_{\mathsf{sig}} + \mathcal{N}_{\mathsf{bkg}}}} e^{-rac{\sigma_t^2 \Delta m_{\mathsf{s}}^2}{2}}$$

Flavor tagging overview

- Flavor tagging algorithms can be divided into two main categories
 - Opposite side (OS): exploits decay products of the other B hadron in the event
 - **OS muon**: leverages $b \rightarrow \mu^{-}X$ decays
 - **OS electron**: leverages $b \rightarrow e^{-X}$ decays
 - **OS jet**: capitalizes on charge asymmetries in the OS *b*-jet
 - **<u>Same side (SS)</u>**: exploits the B_s fragmentation
 - **SS tagger**: leverages charge asymmetries in the B_s fragmentation
 - Main contributor to the tagging perf.
 - Currently not used in ATLAS
- Flavor tagging information is converted to a probability and propagated to the Likelihood

Fit strategy

- The physics parameters are extracted with unbinned multidimensional extended maximum-likelihood (UML) fit
 - $\circ \quad \textit{Physics parameters: } \varphi_{s}, \Delta\Gamma_{s}, \Gamma_{s}, |A_{(0, \perp, \parallel)}|^{2}, |A_{s}|^{2}, \delta_{(\perp, \parallel)}, \delta_{s}, |\lambda|^{\dagger}, \Delta m_{s}^{\dagger}$
 - $\circ \quad \textit{Observables: } m_{Bs}, t, \sigma_t, \cos \theta_T, \cos \psi_T, \phi_T, \omega_{tag}, \sigma_{mBs}^{**}, p_T^{**}$
- Fit model

$$\frac{P(t,\sigma_t,\Theta,\xi_{tag},\omega_{tag},m\mid\alpha)}{\epsilon(t)} = \left[\frac{\Gamma(t,\Theta,\xi_{tag},\omega_{tag}\mid\alpha)}{\Theta} \otimes \frac{G(t\mid\sigma_t)}{\Theta} \cdot e(\Theta) \cdot P(\sigma_t) P(m) P(\omega_{tag}) + P_{bkg}(\dots) + P_{bkg$$

- Analytical decay rate
- Time resolution
 - In ATLAS, conditional to the p_T of the candidate
- Angular efficiency
- Time efficiency
- Backgrounds sources:
 - o combinatorial
 - $\circ \quad B^{0} \rightarrow J/\psi \ K^{*} \rightarrow \mu \mu \ K \pi$
 - $\circ \quad \Lambda_{_{\rm b}} \twoheadrightarrow {\rm J}/\psi \ \Lambda^{_0} \twoheadrightarrow \mu \mu \ {\rm Kp} \ ({\rm negligible \ in \ CMS})$

†: CMS only, fixed to PDG value in ATLAS

CMS

Fit results

Parameter	Fit value	Stat. uncer.	Syst. uncer.
ϕ_s [mrad]	-73	± 23	±7
$\Delta\Gamma_{\rm s} [{\rm ps}^{-1}]$	0.0761	± 0.0043	± 0.0019
Γ_s [ps ⁻¹]	0.6613	± 0.0015	± 0.0028
$\Delta m_s [\hbar \mathrm{ps}^{-1}]$	17.757	± 0.035	± 0.017
$ \lambda $	1.011	± 0.014	± 0.012
$ A_0 ^2$	0.5300	± 0.0016	± 0.0044
$ A_{ } ^{2}$	0.2409	± 0.0021	± 0.0030
$ A_{\rm S} ^2$	0.0067	± 0.0033	± 0.0009
δ_{\parallel}	3.145	± 0.074	± 0.025
δ_{\perp}	2.931	± 0.089	± 0.050
$\delta_{S\perp}$	0.48	± 0.15	± 0.05

	Solution (a)			99
	Parameter	Value	Statistical	Systematic
			uncertainty	uncertainty
	ϕ_s [rad]	-0.087	0.036	0.021
Λ	$\Delta\Gamma_s [\text{ps}^{-1}]$	0.0657	0.0043	0.0037
Í	$\Gamma_s [\mathrm{ps}^{-1}]$	0.6703	0.0014	0.0018
	$ A_{\parallel}(0) ^2$	0.2220	0.0017	0.0021
7	$ A_0(0) ^2$	0.5152	0.0012	0.0034
1	$ A_{S} ^{2}$	0.0343	0.0031	0.0045
	δ_{\perp} [rad]	3.22	0.10	0.05
	δ_{\parallel} [rad]	3.36	0.05	0.09
	$\delta_{\perp} - \delta_S$ [rad]	-0.24	0.05	0.04

• ϕ_s and $\Delta \Gamma_s$ are found in agreement with the SM

 $\phi_s^{SM}\simeq -37\pm 1 \,\, {
m mrad} \qquad \Delta \Gamma_s^{SM} = 0.091\pm 0.013 \,\, {
m ps^{-1}}$

- Γ_s and Δm_s are consistent with the latest world averages in CMS $\Gamma_s^{WA} = 0.6573 \pm 0.0023 \text{ ps}^{-1}$ $\Delta m_s^{WA} = 17.765 \pm 0.006 \text{ }\hbar \text{ps}^{-1}$
- Some tension is observed in ATLAS in Γ_s w.r.t. the world average
- Still dominated by statistical uncertainty

First evidence of CPV in this

13

Comparison between LHC experiments

Results and outlook

• After combination with Run1 results, the current best results for the measurement of φ_s and $\Delta\Gamma_s$ in CMS and ATLAS are

 $\phi_s = -74 \pm 23 \text{ [mrad]}$ CMS: $\Delta \Gamma_s = 0.0780 \pm 0.0045 \text{ [ps}^{-1]}$ ATLAS: $\phi_s = 0.087 \pm 0.036 (\text{stat.}) \pm 0.021 (\text{syst.}) [\text{mrad}]$ $\Delta \Gamma_s = 0.0657 \pm 0.0043 (\text{stat.}) \pm 0.0037 (\text{syst.}) [\text{ps}^{-1}]$

- Both measurements are still limited by statistics
 - ATLAS is still missing a large part of Run2 + all of Run3
 - CMS has completed the Run2 analysis and is looking at Run3
- New opportunities will come in Run3 using additional trigger strategies, like the Scouting/Trigger Level analysis or the Delayed Reconstruction/Parking streams which have been expanded to include B-Physics
- Phase2 will provide an unprecedented amount of data, which will push the uncertainty on ϕ_s to the O(mrad) level
 - New strategies will be required to deal with the currently negligible systematics (e.g. penguin contributions)

ATLAS and CMS

General purpose detector able to perform a vast range of physics studies, including flavor physics

The CMS B parking dataset

- Designed to allow CMS to perform B physics measurements on difficult/impossible to trigger final states (e.g. fully hadronic final states)
- Achieved with a set of **single muon triggers** (tags) with different thresholds in p_{τ} and impact parameter
 - Luminosity decreases during a run → less restrictive triggers enabled
 - Maximises the available trigger bandwidth
 - Events are *parked* for later reconstruction
 - Very high purity of ~80%
- No impact on the standard CMS physics programme
- 10 billion unbiased B hadron decays collected in 2018 (L_{int} ~ 41 fb⁻¹)

Signal channel

Event selection

- First, $K_s \rightarrow \pi^+\pi^-$ are reconstructed fitting the π tracks to a common vertex
 - $|m(π^+π^-) m(K_s^{w.a.})| < 20 \text{ MeV}, p_T(K_s) > 2.2(1.0) \text{ GeV}$
- In the signal channel, two K_s candidates are required and fitted to a common vertex to form D⁰ → K_sK_s candidates
 - 1.7 GeV < m(K_s K_s) < 2.0 GeV
 - K_s displacement in *xyz* from the D⁰ vertex >9 σ and >7 σ
 - $D^{\bar{0}}$ displacement in *xyz* (*xy*) from the PV >9 σ (>2 σ)

• In the **reference channel**, two track with $p_T > 0.6$ GeV are used to form the $D^0 \rightarrow K_s \pi^+\pi^-$ candidate

- ο 1.823 < m(K _sπ⁺π⁻) < 1.908 GeV
- **Finally**, an additional track with $-1.2 < |\eta| < 1.2$ and $p_T > 0.36$ GeV is added to form $D^{*+} \rightarrow D^0 \pi^+$ candidates
 - $\circ \qquad m(D^0\,\pi^{\scriptscriptstyle +}) = m(D^0\pi^{\scriptscriptstyle +}) \, \, m(D^0) \, + \, m_{_{PDG}}(D^0) \label{eq:model}$
- **Background suppression**: several fits corresponding to incorrect topologies are performed and vertex probabilities requirements are imposed

Selection

Variable	Requirement
$p_{\rm T}$ of tagging pion from $D^{*\pm} \rightarrow D\pi^{\pm}$	> 0.35 GeV
η of tagging pion from $D^{*\pm} \rightarrow D\pi^{\pm}$	$-1.2 < \eta < 1.2$
$p_{\rm T}({\rm K}^0_{\rm S})$	> 2.2 GeV and $> 1.0 GeV$
$P_{vtx}(D\pi^{\pm})$	> 5%
$P_{vtx}(K_S^0K_S^0)$	> 1%
$P_{vtx}(\pi^+\pi^-)$ for $\mathrm{K}^0_{\mathrm{S}} \to \pi^+\pi^-$	> 1%
D^0 vertex displacement from the PV in xy	> 2 s.d.
D^0 vertex displacement from the PV in <i>xyz</i>	> 9 s.d.
K_{S}^{0} vertex displacement from the D ⁰ vertex in xyz	> 9 s.d. and > 7 s.d.
angle between D^0 momentum and displacement from PV in <i>xyz</i>	< 0.205 rad
angle between D^0 momentum and displacement from PV in xy	< 0.237 rad
angle between D^0 momentum and displacement from BX in xy	< 0.237 rad

Table 1: Optimized selection criteria in the signal channel $D^0 \rightarrow K^0_S K^0_S$.

Trying to

Penguin contributions

Assuming this is negligible

We
$$\phi_s = \phi_s^{tree} + \Delta \phi_s^{penguin} + \Delta \phi_s^{NP}$$

measure this $\sin(2\beta) = \sin(2\beta^{tree} + \Delta \phi_d^{penguin} + \Delta \phi_d^{NP})$ Trying to probe this

Penguin pollutions are expected to be small for B_s, but they are not well constrained .

 $\Delta \phi^{\text{penguin}}_{s} pprox 3 \pm 10 \text{ mrad}$

Analysis of penguin and NP contributions is possible using Cabibbo-favored control channels .

