

Status and perspective of CPV and CKM measurements at ATLAS and CMS

Enrico Lusiani^a on behalf of ATLAS and CMS Collaborations a INFN Padova

Third Italian Workshop on the Physics at High Intensity, 12/11/2024

CP violation in the SM

- In the SM quark transitions are possible through flavor-changing weak interactions
- **● Information about the strength of the transition is contained in the Cabibbo-Kobayashi-Maskawa (CKM) matrix**
	- Parameters: 3 angles + 1 complex phase
- **● The single complex phase allows for CP violation**
- In the SM, the CKM matrix is **unitary**
	- Unitary conditions can be represented by "unitary triangles"

Search for CP violation in $D^0 \rightarrow K_s K_s$

CMS: [arXiv:2405.11606](https://arxiv.org/abs/2405.11606)

Dataset: 2018 B Parking (41 fb⁻¹)

Motivations

- **● CP violation in the up-quark sector is not studied as well as in the down-quark one**
	- Expected to be suppressed by the GIM mechanism and CKM element size
- **● Observation of a significant CPV** ➜ **hints of BSM physics**
	- First observation of CPV in D mesons in 2019 by LHCb with D^0 → K⁺K⁻ and D^0 → π⁺π⁻ decays <u>p--122(2019)211803</u>
- **●** Presented here: **measurement of the direct CPV in**

$$
D^0 \rightarrow K_{\rm s} K_{\rm s} \text{ decays}
$$

$$
A_{CP} = \frac{\Gamma(D^0 \rightarrow K_S^0 K_S^0) - \Gamma(\overline{D}^0 \rightarrow K_S^0 K_S^0)}{\Gamma(D^0 \rightarrow K_S^0 K_S^0) + \Gamma(\overline{D}^0 \rightarrow K_S^0 K_S^0)}
$$

• From theory, CPV in $D^0 \rightarrow K_{\rm s} K_{\rm s}$ could be as large as $O(1\%)$ [\[PRD92\(2015\)054036](https://doi.org/10.1103/PhysRevD.92.054036)]

 $\overline{\mathbf{u}}$

W exchange diagram for D0

Measurement strategy

- **●** Use D⁰ from D^{*+} → D⁰ π⁺ and D^{*-} → D⁰ π⁻, so that the pion charge tags the D⁰ flavor
- This introduces additional asymmetries due to the D*⁺ /D*- differences in the measurement

A_{CP} extraction

To extract the CP asymmetry a **2D maximum-likelihood fit is performed on the invariant mass of the D*⁺ and D⁰**

- \bullet Fit is done simultaneously on the D^{*+} and D^{*-} samples with only the yields left to float
- **Main fit components** (signal channel):
	- \circ D⁰ x D^{*+}, the signal component
	- \circ D⁰ x *bkg*, real D⁰ but fake D^{*+}
	- *bkg* x *bkg*, background in both dimensions
- **Notable selections:** $m(\pi^+\pi) \in \text{PDG} \pm 20 \text{ MeV}$, m(K $K_{\rm g}$ K \leq [1.7,2.0] GeV, displaced by >9(2) σ in xyz(xy)
- **Background suppression:** fit alternative topologies, select based on vertex probabilities
- **● Yields:**

Reference channel Signal channel

Candidates

1.80

1.85

1.90

 $m(K_S^0 K_S^0)$ [GeV]

Systematic uncertainties

1.95

1.85

1.90

 $m(K_S^0 K_S^0)$ [GeV]

1.95

1.80

Results and outlook

• Putting everything together, ΔA_{CB} is measured

 $\Delta A_{CP} = 6.3 \pm 3.0$ (stat) \pm 0.2 (syst) %

● Using the world-average value of A_{cP}(K_s π⁺π⁻) = (-0.1 ± 0.8)%, A_{cP}(K_sK_s) is found to be

 $A_{CP}(D^0 \to K_S^0 K_S^0)$ = 6.2 \pm 3.0 (stat) \pm 0.2 (syst) \pm 0.8($A_{CP}(K_S^0 \pi^+ \pi^-)$) %

- Consistent with no CP violation at 2σ, with LHCb $\frac{PRD104(2021)L031102}{R}$ (-3.1 \pm 1.3)%] at 2.7 σ and Belle $\frac{[PRL119(2017)171801]}{[0.0 \pm 1.5)}$ $\frac{[PRL119(2017)171801]}{[0.0 \pm 1.5)}$ $\frac{[PRL119(2017)171801]}{[0.0 \pm 1.5)}$ %] at 1.80
- **This is the first CMS study of CP violation in the charm sector, paving the way for future measurements using**
	- More data
	- Refined techniques
	- Different channels

Measurement of the time-dependent CP violation in B s mesons

CMS: [CMS PAS BPH-23-004](https://cds.cern.ch/record/2894821)

ATLAS: EPJC81(2021)342

Dataset: CMS: 2017-18 (96 fb-1) ATLAS: 2015-17 (80 fb-1)

Motivations

- **● B s mesons decays allow us to study the time-dependent CP violation generated by the interference between direct decays and flavor mixing**
- **● The weak phase ϕ^s is the main CPV observable**
	- © Predicted by the SM to be $\phi_{\rm s} \approx$ **-2β**_s= **-37 ± 1 mrad** (<u>[\[CKMfitter](http://ckmfitter.in2p3.fr/www/results/plots_spring21/num/ckmEval_results_spring21.html), UTfit</u>])
		- $\beta_{\rm s}$ \rightarrow angle of the $\text{B}_{\rm s}$ unit. triangle
- New physics can change the value of $φ_$ up to ~100% via new particles contributing to the flavor oscillations [\[RMP88\(2016\)045002](https://doi.org/10.1103/RevModPhys.88.045002)]

- \bullet **↓**_s has been first measured by the Tevatron experiments D0 and CDF
- \bullet At LHC $\phi_{\rm s}$ has been measured several times by ATLAS, LHCb, and CMS
- This presentation is about the measurements in the *golden* channel
	- $B_s \rightarrow J/\psi \phi(1020) \rightarrow \mu^+\mu^-K^+K^-$
		- \circ **CMS:** 96.4 fb⁻¹ 2017 18 + 19.7 fb⁻¹ Run1
		- **ATLAS:** 80 fb-1 2015 17 + 19.2 fb-1 Run1
			-

A time-, flavor- and angular-dependent measurement

Core ingredients

- **Time-dependent angular analysis** to separate the CP eigenstates ("transversity basis" used)
- **Time-dependent flavor analysis** to resolve the B s mixing oscillations (T $\scriptstyle\mathtt{\sim}$ 350 fs, CMS/ATLAS $\mathtt{\sigma_{t}}$ $\scriptstyle\mathtt{\sim}$ 65 fs)

$$
\text{sensitivity}\propto\sqrt{\frac{\epsilon_{tag} \mathcal{D}_{tag}^2 N_{sig}}{2}}\,\sqrt{\frac{N_{sig}}{N_{sig}+N_{bkg}}}\,e^{-\frac{\sigma^2_{f}\Delta m^2_{S}}{2}}\,
$$

Flavor tagging overview

- **Flavor tagging algorithms** can be divided into two main categories
	- **Opposite side (OS)**: exploits decay products of the other B hadron in the event
		- **● OS muon**: leverages *b* ➜ *μ -X* decays
		- **● OS electron**: leverages *b* ➜ *e -X* decays
		- **OS jet:** capitalizes on charge asymmetries in the OS *b*-jet
	- Same side (SS): exploits the B_s fragmentation
		- **SS tagger:** leverages charge asymmetries in the B_s fragmentation
			- Main contributor to the tagging perf.
		- **Currently not used in ATLAS**
- Flavor tagging information is converted to a probability and propagated to the Likelihood

Fit strategy

- The physics parameters are extracted with **unbinned multidimensional extended maximum-likelihood (UML) fit**
	- \circ Physics parameters: $\phi_{_{\rm S}},$ ΔΓ $_{_{\rm S}},$ Γ $_{_{\rm S}},$ |A $_{_{(\,0,\,\perp,\,\,\parallel\,\,)}^{\,2},$ |A $_{_{\rm S}}^{\,12},$ δ $_{_{\rm G},\,\perp,\,\,\parallel\,\,},$ δ $_{_{\rm S}},$ |λ| † , Δm $_{_{\rm S}}^\dagger$
	- \circ *Observables*: m_{Bs}, t, σ_τ, cos θ_T, cos ψ_T, φ_T, ω_{tag}, σ_{mBs}*, p_T*
- **● Fit model**

$$
\frac{P(t, \sigma_t, \Theta, \xi_{tag}, \omega_{tag}, m \mid \alpha)}{\epsilon(t)} = \left[\frac{\Gamma(t, \Theta, \xi_{tag}, \omega_{tag} \mid \alpha)}{\Gamma(t, \Theta, \xi_{tag}, \omega_{tag} \mid \alpha)} \otimes \frac{G(t \mid \sigma_t)}{G(t \mid \sigma_t)} \right] \cdot \frac{\epsilon(\Theta)}{P(\sigma_t) P(m) P(\omega_{tag}) + P_{bkg}(\dots)}
$$

- **● Analytical decay rate**
- **Time resolution**
	- \circ In ATLAS, conditional to the p_T of the candidate
- **Angular efficiency**
- **Time efficiency**
- **● Backgrounds sources:**
	- combinatorial
	- \circ B⁰ → J/ψ K^{*} → μμ Kπ
	- \circ Λ_{h} \rightarrow J/ψ Λ^{0} \rightarrow μμ Kp (negligible in CMS)

†: CMS only, fixed to PDG value in ATLAS

 $\stackrel{\text{\tiny \textsf{at}}}{=} 12$

CMS

Fit results

● **ϕ^s and ΔΓ s are found in agreement with the SM**

 $\phi_s^{SM} \simeq -37 \pm 1$ mrad $\Delta \Gamma_s^{SM} = 0.091 \pm 0.013$ ps⁻¹

- **Γ s and Δm s are consistent with the latest world averages in CMS** $\Gamma_s^{WA} = 0.6573 \pm 0.0023$ ps⁻¹ $\Delta m_s^{WA} = 17.765 \pm 0.006$ \hbar ps⁻¹
- **•** Some tension is observed in ATLAS in Γ_s w.r.t. the world average
- Still dominated by statistical uncertainty

First evidence of CPV in this

13

Comparison between LHC experiments

Results and outlook

 \bullet After combination with Run1 results, the current best results for the measurement of $\phi_{\rm s}$ and $\Delta\Gamma_{\rm s}$ in CMS and ATI AS are

CMS: $\phi_s = -74 \pm 23$ [mrad]
CMS: $\phi_s = 0.0780 \pm 0.0045$ [ps⁻¹]
 $\sigma_s = 0.087 \pm 0.0043$ (stat.) ± 0.021 (syst.) [mrad]
 $\sigma_s = 0.0657 \pm 0.0043$ (stat.) ± 0.0037 (syst.) [ps⁻¹] $\phi_s = 0.087 \pm 0.036 \text{(stat.)} \pm 0.021 \text{(syst.)}$ [mrad]

- Both measurements are still limited by statistics
	- \circ ATLAS is still missing a large part of Run2 + all of Run3
	- CMS has completed the Run2 analysis and is looking at Run3
- New opportunities will come in Run3 using additional trigger strategies, like the Scouting/Trigger Level analysis or the Delayed Reconstruction/Parking streams which have been expanded to include B-Physics
- Phase2 will provide an unprecedented amount of data, which will push the uncertainty on $φ_$ to the O(mrad) level
	- New strategies will be required to deal with the currently negligible systematics (e.g. penguin contributions)

ATLAS and CMS

General purpose detector able to perform a vast range of physics studies, including flavor physics

The CMS B parking dataset

- **● Designed to allow CMS to perform B physics measurements on difficult/impossible to trigger final states** (e.g. fully hadronic final states)
- Achieved with a set of **single muon triggers** (tags) with different thresholds in $\bm{{\mathsf{p}}}_\text{T}$ and impact parameter
	- Luminosity decreases during a run ➜ less restrictive triggers enabled
		- Maximises the available trigger bandwidth
	- Events are *parked* for later reconstruction
	- \circ Very high purity of \sim 80%
- No impact on the *standard* CMS physics programme
- **10 billion unbiased B hadron** decays collected in 2018 $(L_{int} \sim 41 \text{ fb}^{-1})$

Signal channel

Event selection

- **• First, K_S → π⁺π⁻ are reconstructed fitting the π tracks to a common vertex**
	- \circ \mid m(π⁺π⁻) m(K_s^{w.a.}) | < 20 MeV, p_T(K_S) > 2.2(1.0) GeV
- In the **signal channel**, two K_s candidates are required and fitted to a common vertex to form $D^0 \rightarrow K_{\rm g}K_{\rm g}$ candidates
	- 1.7 GeV < m(K $_{\rm e}$ K $_{\rm e}$) < 2.0 GeV
	- \circ $\,$ K_S displacement in *xyz* from the D⁰ vertex >9σ and >7σ
	- o D⁰ displacement in *xyz (xy)* from the PV >9σ (>2σ)
- \bullet In the **reference channel**, two track with $p_T > 0.6$ GeV are used to form the D⁰ \rightarrow Κ $_{\rm s}$ π⁺π⁻ candidate
	- \circ 2 1.823 $<$ m(K $_{\rm S}$ π $^+$ π $^{\rm >}$ $<$ 1.908 GeV
- **Finally**, an additional track with -1.2 < $|\eta|$ < 1.2 and p_T > 0.36 GeV is added to form $D^{*+} \rightarrow D^0 \pi^+$ candidates
	- m(D⁰ π⁺) = m(D⁰π⁺) m(D⁰) + m_{PDG}(D⁰)
- **Background suppression:** several fits corresponding to incorrect topologies are performed and vertex probabilities requirements are imposed

Selection

Table 1: Optimized selection criteria in the signal channel $D^0 \rightarrow K_S^0 K_S^0$.

Trying to

Penguin contributions

Assuming this is negligible

\nWe measure\n
$$
\[\n\begin{array}{c}\n\phi_S = \phi_S^{tree} + \Delta \phi_S^{penguin} \\
\sin(2\beta) = \sin(2\beta^{tree} + \Delta \phi_d^{penguin}\n\end{array}\n\]\n+ \Delta \phi_S^{NP}\n\]\n+ \Delta \phi_S^{NP}\n\]\n
$$

\n\n**Trying to probe this problem.**

 \bullet Penguin pollutions are expected to be small for $B_{\rm s}$, but they are not well constrained

 $\Delta\phi_s^{\text{penguin}} \approx 3 \pm 10$ mrad

Analysis of penguin and NP contributions is possible using Cabibbo-favored control channels

21