Recent results on dark sector searches at Belle II

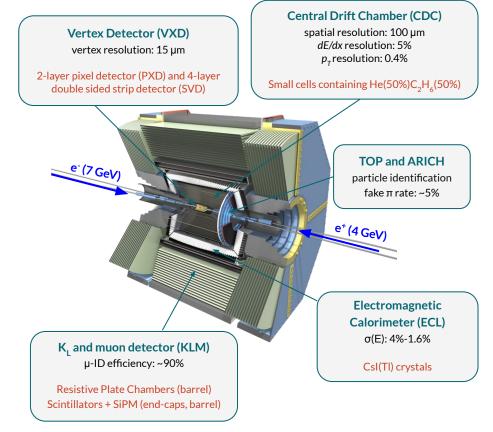
Foteini Faidra Trantou, on behalf of the Belle II collaboration

Università di Pisa and INFN Pisa foteini.trantou@pi.infn.it

Workshop Italiano sulla Fisica ad Alta intensità, Bologna 12-15 November 2024

Outline

- The Belle II experiment
 - Dark sector searches at Belle II
- Recent results on dark sector searches
 - The Z' searches: Z' decay into $\mu^+\mu^-$
 - Light (pseudo) scalars in B-meson decays
 - Inelastic dark matter and a dark higgs boson
- Summary

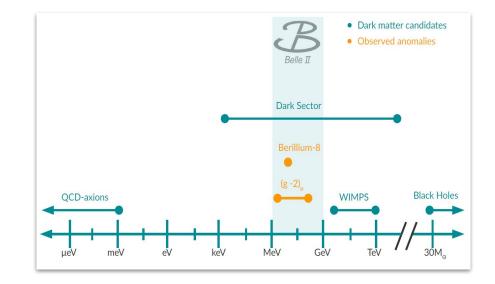

The Belle II experiment

Overview

- Operating at the SuperKEKB accelerator (Tsukuba, JP), an e^+e^- asymmetric energy collider
- Optimized for the production of B meson pairs, but also D mesons and τ leptons.
- Collisions occur mainly at $\sqrt{s} = 10.58 \text{ GeV}$, corresponding to the m_{inv} = Y(4S)

Data taking status

- Run I (2019-2022) + Run II (February 2024-Now):
 Recorded a total luminosity of more than 544 fb⁻¹.
- SuperKEKB reached world's highest instantaneous luminosity at ${\cal L}=4.7 imes10^{34}~cm^{-2}s^{-1}$.
- Target: $\int \mathcal{L} dt = 50 \ ab^{-1}$ (50 x Belle dataset!)



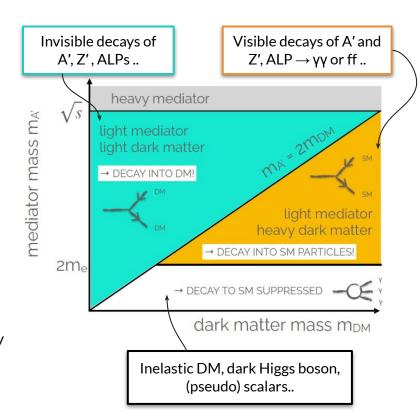
See talks by <u>M.Mantovano</u>, <u>A.Gaz</u>, <u>L.Zani</u> and <u>D.Gosh</u> for more information

Dark sector searches at Belle II

Belle II can access the mass range naturally favored by light dark sectors (DS): M_{Dark matter} ~ O (MeV - GeV)

- Large potential for dark matter (DM) discoveries:
- Utilizing the advantages of B factories
 - High luminosity: $\mathcal{L} > 10^{34} \ cm^{-2} \ s^{-1}$
 - Well defined initial state: $E_{CMS} = 2 \times E_{heam}$ 0
 - **Clean environment** with low background 0
 - Hermiticity (4π detectors): excellent particle identification (PID) performance

Dedicated **triggers for low multiplicity** final states: single photon, single track and single muon triggers

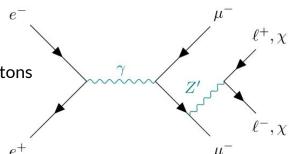


We can reconstruct **missing energy events** or search for invisible signatures, both crucial in DM detection and DS searches.

Dark sector signatures

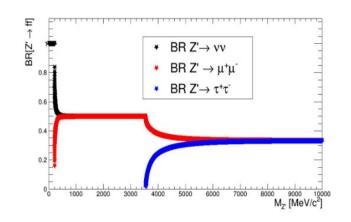
- Searching for dark sector particles
- \rightarrow Directly produced in e^+e^- collisions
- → Emerging from the decay of mesons (such as B,D) or fermions (such as τ)

- Depending on the DS mediator and DM candidate mass hypothesis, different scenarios arise:
- Visible decay to SM: Search for DS mediators
- Invisible decay to DM:
 Search for DM or DS mediators in final states with missing energy
- Suppressed decays to SM lead to long-lived mediators


Recent results on dark sector searches

The Z' searches

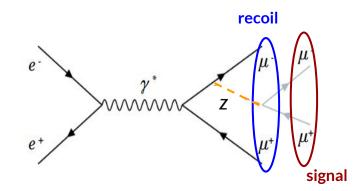
 $L_{\mu} - L_{\tau}$ model

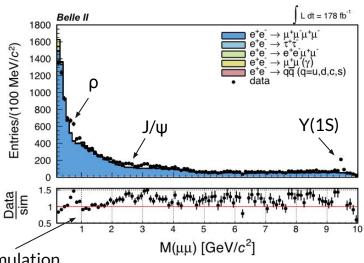

Z' is a vector boson which couples at strength g'only to 2nd and 3rd generation leptons

 \rightarrow Could provide insights to the $(g-2)_{\mu}$ anomaly and the DM phenomenology

- Possible decays and signatures
- Visible decay: $Z' \to \mu^+\mu^-, Z' \to \tau^+\tau^-$ Constraints from BaBar (2016), CMS (2019), Belle (2022) and neutrino-nucleus scattering experiments (CCF, CHARM)

• Invisible decay: ${f Z}' o
u ar
u, {f Z}' o \chi ar \chi$ Constrained by Belle II (2023), BESII(2024),NA64-e (2022) and NA64-mu (2024)


Search for Z' decay into μ'μ-


I. Adachi et al., Phys. Rev. D 109, 112015 (2024)

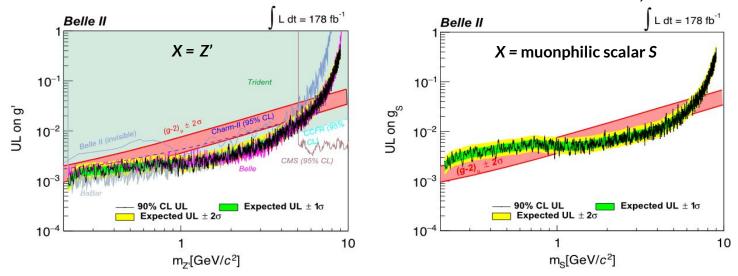
Strategy: Search for a $\mu^+\mu^-$ resonance in four-muon events

Signal signature is a narrow peak in the mass distribution of oppositely charged muons $M(\mu\mu)$

- Selections
- Events with 4 tracks in the final state:
 - At least three identified as muons.
 - o m_{iny} (4 tracks) ~√s
 - Zero net charge and no extra energy
- **Main SM background:** $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ events
- Signal extraction: Fit scan on the di-muon reduced mass spectrum

No ISR effects included in the MC simulation

Search for Z' decay into μ'μ-


I. Adachi et al., Phys. Rev. D 109, 112015 (2024)

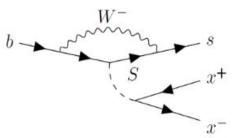
No significant excess found with 178 fb⁻¹ \rightarrow 90% CL upper limits set on the cross sections for the processes

$$e^+e^-
ightarrow \mu^+\mu^- X(
ightarrow \mu^+\mu^-)$$
 where X = Z', S $ightharpoons$

Results translated into upper limits on the coupling constant:

- g' for the Z' ($L_u L_\tau$ model) \rightarrow Competitive results with BaBar (> 500 fb⁻¹) and Belle (> 600 fb⁻¹)
- g_s for the **muonphilic** scalar model (S) \rightarrow **First limits** set on S from a dedicated search

Reinterpreted also as

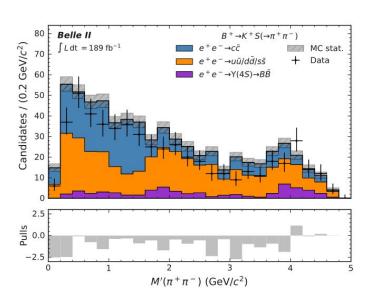

muonphilic dark scalar S.

Efficiency is **re-evaluated**/ for the new model

Search for light (pseudo) scalars in B-meson decays

I. Adachi et al., Phys. Rev. D 108, L111104 (2023)

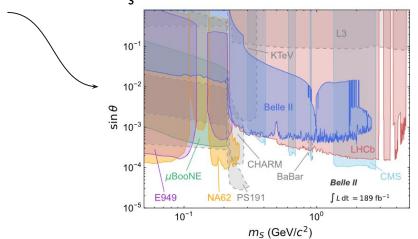
A light scalar S mediator could be produced in $b \rightarrow s$ quark transitions: S may interact with SM Higgs boson through a mixing angle θ (naturally long lived for small θ)

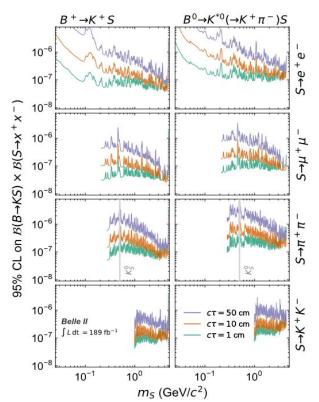


- Strategy: Search for a bump in the m_{inv} of tracks coming from a displaced vertex accompanied by a charged K
 - → Look for S decays into SM in 8 different channels:

$$\left. egin{aligned} B^0 &
ightarrow K^{*0} (
ightarrow K^+\pi^+) S , \ B^+ &
ightarrow K^+S \end{aligned}
ight. egin{aligned} \mathbf{S}
ightarrow x^+x^- & ext{where } x=e,\mu,\pi,\mathsf{K} \end{aligned}$$

- Fully reconstructed B decay
- Long-lived K_s^0 mass region vetoed
- Probing different lifetimes for *S*
- lacksquare Main SM background: combinatorial $\,e^+e^ightarrow q\overline{q}\,$ events
- Signal extraction: Maximum likelihood fits to the reduced invariant mass


Search for light (pseudo) scalars in B-meson decays


I. Adachi et al., Phys. Rev. D 108, L111104 (2023)

No significant excess found with 179 fb⁻¹ \rightarrow 95% CL upper limits set on the cross sections

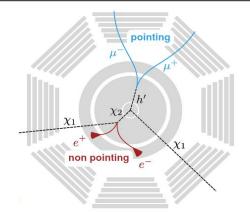
$$B^0 o K^{*0} (o K^+ \pi^+) S$$
 and $B^+ o K^+ S$

- First limits set on S on exclusive hadronic final states and for e^+e^- final states
- Reinterpreted also as an axion-like particle (ALP)
- Results used to constrain the parameter space for the sine of the mixing angle parameter θ and the scalar mass m_s

Search for inelastic dark matter and a dark Higgs boson



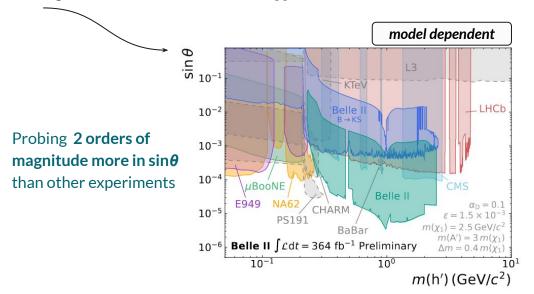
Preliminary results

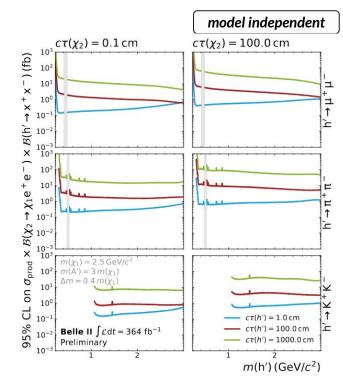

- 4 dark sector particles:
 - two dark matter states, χ_1 and χ_2 , with a small mass splitting Δm_{χ}
 - χ₁ is stable (relic candidate)

 - a dark photon A' and a dark higgs boson h'
 - h' is long lived (mixing with the h_{SM} at an angle θ)
- Strategy: Search for a bump in the m_{inv} of the dark higgs in events with up to two displaced vertices and missing energy
- Selections
- Four tracks in the final state
 - 2 forming a displaced vertex pointing back to the IP (h')
 - \circ 2 forming one **non-pointing** displaced vertex (χ_2)
- Probing different lifetimes for h' and χ_2
- **Main SM background:** long-lived K_s^0 (mass region vetoed)
- Signal extraction: Cut-and-count technique (low background levels)

$$e^+e^-
ightarrow h'(
ightarrow x^+x^-)A'(
ightarrow \chi_1\chi_2(
ightarrow \chi_1e^+e^-))$$

7 parameters: $m_{A''}$ $m_{h''}$ $m_{\chi 1}$, $\Delta m_{\chi'}$, θ , ϵ , α_D




Search for inelastic dark matter and a dark Higgs boson

Preliminary results

- No significant excess found with 364 fb⁻¹ o 95% CL upper limits set on the cross section $\sigma(e^+e^- \to h'\chi_1\chi_2)$ and the branching fractions $\mathcal{B}(\chi_2 \to \chi_1 e^+e^-) \times \mathcal{B}(h' \to x^+x^-)$ where $x = \mu, \pi, K$
- Results used to constrain the parameter space for the **sine of the mixing angle parameter 0** and the dark higgs mass **m(h')**

Summary

B-factories provide unique opportunities to explore the dark sector and study light dark matter/mediators
 Excellent sensitivity, complementary to that of higher-energy experiments

Belle II has a wide DS physics program (presented today)

+ many more ongoing analysis!

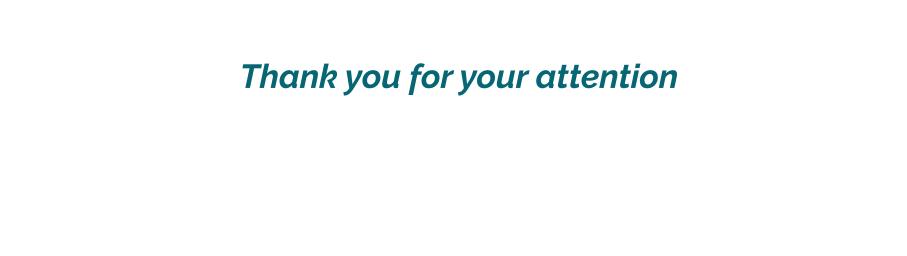
Z' decay into $\mu^+\mu^-$

Light (pseudo) scalars in B-meson decays

Inelastic DM and a dark Higgs boson

Z' decay to $T^{+}T^{-}[PRL]$ ALP-strahlung [PRL]

Z'decay to invisible [PRL] Dark Higgs-strahlung [PRL]


Invisible ALP in LFV tau decays [PRL]

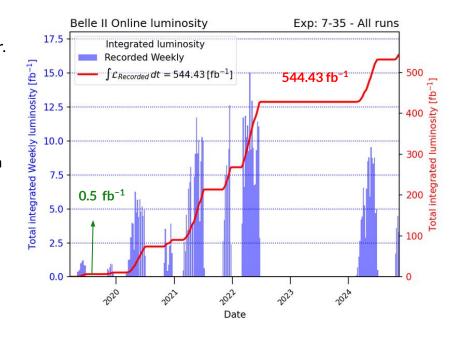
Providing world-leading results and competitive limits on several models, with a subset of the available data

Large potential for future DS searches

- Higher luminosity
- New analysis techniques implemented
- New triggers for low multiplicity events and displaced topologies

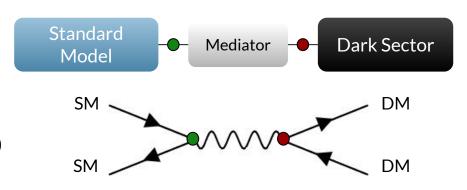
15.11.2024

Phases of the Experiment


- Belle II's data taking timeline is separated into three phases.
- Phase (2016) + Phase II (April July 2018):
 Dedicated to commissioning both the machine and the detector.

Collected 0.5 fb^{-1} of data with an incomplete vertex detector (VXD).

- Phase III (March 25, 2019 Now): Beginning of a full-scale data collection
 - Run I (2019-2022): Recorded a total of **427 fb**⁻¹
 - Run II (January 2024-Now)


The total luminosity collected by the experiment for

Run I and Run II amounts to 544.43 fb⁻¹

The Dark Sector

- Dark matter could be part of a larger hidden/dark sector, a collection of yet-unobserved quantum fields and their corresponding hypothetical particles.
- Dark sector and SM may interact very weakly via subtle mixing through portals, with particles mediating non gravitational interactions between them.
- **Vector portal** \rightarrow Dark photon A', Z'
- Scalar portal \rightarrow Dark Higgs h' or new scalar particles S'
- Pseudo-scalar portal → Axions & axion-like particles (ALPs)
- Neutrino portal → Sterile neutrinos N

Strong motivation:

- Absence of light dark matter and light mediators discoveries in the electroweak scale (M_{DM} ~ O (MeV GeV), despite extensive searches at the Large Hadron Collider (LHC) or non-collider searches.
- Could provide insights into certain anomalies in particle physics such as the muon's anomalous magnetic moment (g-2)_u