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Long-lived particles

Standard Model particles exist over a great range of proper lifetimes... and also BSM particles can be long-lived!
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Dark Sectors

New Physics can be decoupled from electroweak scale in Dark Sector models, requiring additional
low-mass mediators to explain the observed relic density with light DM (sub-GeV)
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Dark Sector portals

Pseudoscalar portal: CyF), v 2 axions/ALPs

fa

Vector portal: cFH*F /’w ‘dark’ vector boson (A’, vdq, Zd) which mixes with SM photon
Scalar portal: «H 2S7% 4 uH ’S  ‘dark’ scalar boson (S) —> exotic Higgs decays

Neutrino portal: K(HL)N no more sterile neutrino

Feebly interacting particles are well
motivated but their mass scale is
unknown and are very difficult to probe
at particle colliders, often lead to

unconventional signatures!




Dark Sector portals

displacement

New particles can be long-lived:
observed lifetime is governed by an
exponential defined by the proper lifetime ct
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Triggering LLP

LLPs follow an exponential decay —> important to use all sub-detectors

Tracker Calorimeter Muon system
o Tricky! Dense environment with little e Anomalous shower shapes  |Large muon cluster multiplicity from
information at trigger level... showers
 Large HCal to ECal energy ratio
e |D vertexing with leftover tracks (e.qg. * Displaced vertex with muon tracks
Large Radius Tracking@HLT) * Calo timing

* Very close-by muons
 Rely on triggers that don’t use ID track:
MS-only triggers or photon triggers f T

Timing layer
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TLA and Data scouting

Events must be reconstructed by the trigger before being discarded for further analysis

... rather than throw away the event, save the trigger reconstructed information!

e Collection of limited resolution events at significantly higher rates than the standard
LO/L1 —> reduce trigger bias enhancing sensitivity for new physics

muon pt [GeV]

Extremely effective for Dark Sector searchers with reduced pT thresholds and looser
constraints
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Road to HL-LHC

LHC HL-LHC
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High-Luminosity LHC: 2029 and beyond
e Deliver up to 4000 fb-1 integrated luminosity at 14 TeV
e |ncrease in instantaneous luminosities up to L = 7.5x1034 cm—2 s-1 (Run-2 ~ 2x1034)

e Pile-up <u> = 200 interactions per bunch crossing (Run-2 ~ 20-60)



Road to HL-LHC
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What does a p ~ 200 mean in terms of a detector requirement in HL-LHC to maintain similar performance:
e |Larger event sizes —> more collisions per bunch crossing, many more tracks,

 Higher detector occupancy —> need a detector with higher granularity

 Higher trigger rates —> redesign of our trigger architecture and readout system

* |ncreasing reconstruction complexity —> Run more complex software online

* High radiation environment —> need silicon with higher tolerances
9



CMS TDAQ@HL-LHC

Calorimeter trigger Muon trigger Track trigger L1 -

Detector Backend systems o CUS tom FP G A har dware
» All detectors (but silicon-pixel) provide inputs: tracks!

e Data reduction 40 MHz —> 750 kHz (100 kHz@Run3)
aorar W/ 12.5 Us (3.8 us@Run3) latency

TP

Local

Global Calorimeter
Trigger

Correlator trigger:
77 e Information from subsystems combined in an offline-

(s B like fashion

* Particle Flow, PU mitigation; ubiquitous usage of ML

External Triggers

Correlator Trigger

Global Trigger GT

Phase-2 trigger project HLT:
e Farm of servers with CPUs and GPUs

e Data reduction 750 kHz —> 7.5 kHz (1 kHz@Run3)
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ATLAS TDAQ@HL-LHC

Hardware based LO trigger:
e |Inputs from Calo and Muon

e |dentifies physics object and calculates event-level quantities:
LO accept decision

e Data reduction 40 MHz —> 1 MHz (100 kHz@Run3) w/ 10 us
(2.4 us@Run3) latency

DAQ:

e Readout and dataflow with full granularity (offline-like
reconstruction) @1 MHz

Software Based Event Filter:
e Data reduction 1 MHz —> 10 kHz (3 kHz@Run3)
e Multiple types of computational units CPU+GPU/FPGA

 Running event reconstruction algorithm
11
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Efficiency of detection

MS pattern recognition

N

‘/// BO
A ultra-fast (<400ns/inference) NN for identification of muonic particles in the M
muon spectrometer of the ATLAS detector at the LHC ’/ / .
—

f/ BM1

* Precise pI measurement and secondary vertexing already at LO

Layer index

 Multi-stage CNN model compression and simplification based on
aggressive quantisation and knowledge transfer techniques to avoid
degradation of physics performances

Signals from RPC mapped to images,
which can be processed by a CNN
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Precision Timing

If one can trigger on a delayed signature, the efficiency could be improved by more than an order of magnitude

Exploit timing at trigger level:

particle ID and combine with dE/dx to help
improve Heavy Stable Charged Particles
searches

Look for mismatch between time-based and
momentum-based mass reconstruction

Delayed jets and delayed photons

. y

CMS T

;é W A
Per-particle timing —> 4D tracking

Thin layers between tracker and calorimeters:
e MIP sensitivity with 30ps time resolution
 Hermetic coverage for |n|<3.0

Great benefit for displaced vertex reconstruction and LLP tagging
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LO/L1 Tracks

Maintain high efficiency and keep rates under control for L1 objects —> L1 track finding and fitting perfect for LLP

Build track objects from full tracker system: jets, PV, vertices, Ht %
<4
e 2-track vertexing to get a rough idea of where the secondary \ u» /
vertex is from the track parameters: is it a good vertex? If it’s Accept!
close to each track’s dO & z0: keep the vertex, else discard it. +. DV
 Track Jet Trigger for Displaced Jets \,
b _DV . Non collinear
CMS Phase-2 Simulation Preliminary ~ PU200 (14 TeV) ‘. L° Reject!
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AD triggers

Normal trigger selections compare the event particles to a table of rules —> Could these selections reject the New
Physics we’d like to see?

 Exploit autoencoders on FPGAs for microsecond period inferencing
e |solate any type of anomalous event
* Motivate new searches with low or zero trigger acceptance

e Variational autoencoders for dark jets using track information

Process each collision every
25 ns with an AD algorithm

YES!
Could be a hint of a so far

neural network neural network

encoder decoder

unimagined process




Real time analysis

(aka how to take decision fast and efficiently)

ATLAS/CMS produce more data than we can handle: trigger’s
challenge is to keep interesting physics

 Real-time decisions for what to keep built on FPGA —>
microsecond latency constraints @ 40 MHz

e Enables searches that would otherwise have been impossible
due to trigger constraints

e Develop Al based event selection for ultra-fast inference with
extreme sparse data and heavily compressed and quantised
neural network models

* |deal Scenario: Stream global trigger reco to tape

e |f clusters can be saved for every event, a true Trigger-
Less Analysis in the Calorimeter becomes possible
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Conclusions

LLPs are an exciting avenue to search for BSM physics and vital to have triggers that are sensitive
to these unique decays :

e The HL-LHC will increase the statistics for all physics searches, but also produce more
complicated events due to increased pileup

e Upgrades allow reconstruction of more sophisticated, offline-like, objects to improve triggering

e Track trigger and precision timing are game changers, with large gains in acceptance at light
LLPs

 Need to anticipate challenges: let’s prepare well for the next Run and design new amazing
triggers

Let’s make Run-4 LLP friendly!
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CMS upgrade in a nutshell

Trigger requirements are
driving most of the
electronics upgrades
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Challenge: cold operation endcap
-» bi-phase CO, cooling at -35° C
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ATLAS upgrade In a nutshell

e Upgraded Trigger and Data
Acquisition system
e Improved Level-0 Trigger (1 MHz)
* Improved High-Level Trigger

e Electronics Upgrades
e | Ar Calorimeter
e Tile Calorimeter
* Muon system

Tile calorimeters

LAr hadronic end-cap and
\ \ forward calorimeters
\ Pixel detector \ ] ] o
Torold magnets ’fl | Ar electromagnetic calorimeters New ngh Granl“arlty Tlmlng Detector
Muon chambers Solenold magnet | Transition radiation tracker (HGTD)

Semiconductor tracker

e Forward region (2.4 < |n| < 4.0)

e | ow-Gain Avalanche Detectors (LGAD)
with 30 ps time resolution

e New Muon Chambers e New Inner Tracking Detector (ITk) iy
* Inner barrel region e All silicon, up to |n| = * Luminosity measurement
with new RPC (trigger) e Two subsystems: Pixel (inner
and sMDT (precision) ayers) and Strip Additional small upgrades
detectors e Higher granularity for pileup e | uminosity detectors (1% precision goal)

rejection: 50x50 um2 pixels e H_-ZDC
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