

Crystal calorimetry for cLFV

Ivano Sarra - Laboratori Nazionali di Frascati On behalf of the Mu2e Calorimeter group

WIFAI 2024 – Bologna (Italy) November 14, 2024

The Mu2e Experiment at Fermilab

Mu2e searches for **Charged Lepton Flavor Violation (CLFV)** via the coherent conversion:

 $\mu^- + AI \rightarrow e^- + AI$

Mu2e goal: 5σ discovery or x10⁴ limit improvement

Calorimeter Requirements

For the μ \rightarrow e conversion search, the calorimeter adds redundancy and complementary qualities concerning the high-precision tracking system

Technological Choice

- Fast signal for Pileup and Timing:
 - т of emission < 40 ns
 - Fast Digitization (WD) to disentangle signals in pileup
- Crystals with high Light Yield for timing/energy:
 resolution → LY(photosensors) > 20 pe/MeV
- 2 photo-sensors/preamps/crystal for redundancy:
 reduce MTTF requirement → 1 million hours/SIPM
- Radiation Hardness (5 years of running with a safety factor 3):
 - Crystals should survive a TID of 90 krad and a fluence of 3x10¹² n/cm²
 - Photo-sensors should survive 45 krad and a fluence of 1.2x10¹²
 n_1MeV/cm²

The 1 T magnetic field + the small space suggests \rightarrow SiPMs

Undoped Csl + UV-extended SiPMs

- \rightarrow It is radiation hard
- → It has a fast emission time
- → Emits at 310 nm

- → 30 % PDE @ 310 nm
- → New silicon resin window
- → TSV readout, Gain = 10⁶

Mu2e e.m. Calorimeter

2 disks each consisting of - 674 pure Csl crystals - 1248 SiPMs+FEE boards

Hole for laser calibration

6 MeV Calibration External source ring

Inner ring

Back plane with SiPM housing and cooling lines

5

Calorimeter Disks status (91% complete)

- Crystals and SiPMs+FEE readout units and electronics crates installed
- A quick leak test of the cooling system done
- Cable routing from FFE to crates completed
- All readout units tested with laser pulses

- Next Activities in 2024/2025:
- Now: installing all electronics in crates
- Nov: run with cosmics (DAQ test)
- Dic: complete laser system
- Feb: move Disk 1 to Mu2e Hall

First calorimeter VST @ SiDet

- First data from six boards:
 - Disk 1, phi=1
 - Board 1 of Crates 0/1/2
 - Both SiPMs
- Few hours of running
- Nominal V_{op} setting loaded through configuration files
- Most of the data acquired with average FEE calibration
- \circ Three V_{bias} configurations
- Cosmics, laser and noise runs

7

First boards insertion and connection

First Results

- PyROOT script working on reconstructed ntuples starting from SDF code
- Fitting hits above a threshold with a linear function
- Menus to select events, their topology and to display different quantities

14 November 2024

9

A step in the future...

Mu2e \rightarrow Mu2e-II An order of magnitude improvement in the search sensitivity

Calorimeter Requirements (1/3)

Maintain the Mu2e-I requirement:

- We aim to same energy (< 10%) and time (< 500 ps) resolutions as in Mu2e.
- Aiming to provide standalone trigger, track seeding and PID as before.
- Work in vacuum @ 10⁻⁴ Torr, keep a low level of outgassing.

Face up to the higher rate, neutron flux and dose on Disks:

- The pileup with respect to Conversion Electron seems to scale linearly with beam intensity, so to keep the same level we have in Mu2e (15%) with 150 ns we need to rescale the new signals lenght:
- 1. The length for Mu2e-II should be 75 ns (50 ns for 1.5 times Mu2e-II)

Pileup resolution in the waveform fit is still under study and can loose this requirement

Calorimeter Requirements (2/3)

Under the **assumption** that the TID from the beam flash in the calorimeter from 800 MeV protons scales as the number of stopped muons wrt Mu2e 8 GeV beam, a x10 is expected: ∳ [krad/year] [krad/year] FLASH FLASH 10² DEUTERO 10^{2} OOT PHOTO PHOTON 2 NEUTRON 10 PROTON 10 averaged over averaged over Normalized 0.8 0. 10 0.4 Dose Dose 10 10-Csl SIC2013 50×50×300 mm³ 0.2 Reduced to 50×50×200 mm³ beyond 1 Mrad 10 450 500 550 600 650 Csl Kharkov 1 29×29×230 mm³ 500 650 450 600 R [mm] R [mm] 10⁴ 10 10 10 10 10 Integrated Dose (rad) TID reg = simulated TID x3 Safety Factor, x3 yrs, x10 Mu2-II - R < 47 cm -> 600 krad F. Yang, L. Zhang and R. -Y. Zhu, "Gamma-Ray Induced Radiation Damage Up to 340 Mrad in Various Scintillation - R < 55 cm -> 160 krad Crystals," in IEEE Transactions on Nuclear Science, vol. 63, no. 2, pp. 612-619, April 2016, do - R > 52 cm -> 50 krad - R > 47 cm -> 180 krad 10.1109/TNS.2015.2505721 Front disk: Dose / year [kRad] Mu2e QA requirement for TID was a LO after 100 krad > 60% E 600-The requirements on light collection was 30 p.e./MeV 400 Dedicated simulation of the new beam flash and upgraded detectors 200 • o materials are required to determine exact numbers, but so far wrt TID: -200-Disk 1 crystals should survive the new radiation level (??) 400-Disk 0 outer crystals should be in the same situation of disk 1 inner (??) -600 Disk 0 inner crystals must be changed -> BaF2, LYSO (??) -200 200 600 x (mm 400

Calorimeter Requirements (3/3)

Mu2e-II ECAL:

- BaF2 Yttrium doped crystals
- Solar Blind delta-doped FBK SiPM

 \rightarrow efforts to reduce the slow component working on

Crystals

Photo-sensors

14 November 2024

Crystals (1/3)

Fast/Ultrafast for HEP TOF & X-ray Imaging									A COLOR				
S AY 3					arXi	v: 2203.	06788						
	BaF ₂	BaF ₂ :Y	Lu ₂ O ₃ :Yb	YAP:Yb	YAG:Yb	ZnO:Ga	β-Ga₂O₃	LYSO:Ce	LuAG:Ce	YAP:Ce	GAGG:Ce	LuYAP:Ce	YSO:Ce
Density (g/cm³)	4.89	4.89	9.42	5.35	4.56	5.67	5.94	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	2490	1870	1940	1975	1725	2050	2060	1870	1850	1930	2070
X ₀ (cm)	2.03	2.03	0.81	2.59	3.53	2.51	2.51	1.14	1.45	2.59	1.63	1.37	3.10
R _M (cm)	3.1	3.1	1.72	2.45	2.76	2.28	2.20	2.07	2.15	2.45	2.20	2.01	2.93
λ _ι (cm)	30.7	30.7	18.1	23.1	25.2	22.2	20.9	20.9	20.6	23.1	21.5	19.5	27.8
Z _{eff}	51.0	51.0	67.3	32.8	29.3	27.7	27.8	63.7	58.7	32.8	50.6	57.1	32.8
dE/dX (MeV/cm)	6.52	6.52	11.6	7.91	7.01	8.34	8.82	9.55	9.22	7.91	8.96	9.82	6.57
λ _{peak} ^a (nm)	300 220	300 220	370	350	350	380	380	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.0	1.96	1.87	2.1	1.97	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	0.95	0.19 ^d	0.36 ^d	2.6 ^d 4.0 ^d	6.5 0.5	100	35° 48°	9 32	190	16 15	80
Total Light yield (ph/MeV)	13,000	2,000	280	57ª	110ª	2,000 ^d	2,100	30,000	25,000°	12,000	58,000	10,000	24,000
Decay time ^a (ns)	600 0.5	600 0.5	1.1 ^d	1.1 ^d	1.8 ^d	3.0 ^d 1.0 ^d	110 5.3	40	820 50	191 25	570 130	1485 36	75
LY in 1 st ns (photons/MeV)	1200	1200	170	34 ^d	46 ^d	980 ^d	43	740	240	391	400	125	318
LY in 1 st ns /Total LY (%)	9.0	64	60	60	43	49	2.0	2.5	1.2	3.3	0.7	1.4	1.3
40 keV Att. Leng. (1/e, mm)	0.106	0.106	0.127	0.314	0.439	0.407	0.394	0.185	0.251	0.314	0.319	0.214	0.334
^a top/bottom row: slow	^a top/bottom row: slow/fast component; ^b at the emission peak; ^c normalized to LYSO:Ce; ^d excited by Alpha particles; ^e 0.3 Mg at% co-doping; ^f Lu _{0.7} Y _{0.3} AlO ₃ :Ce.												

Crystals (2/3)

Crystals (3/3)

Scaling to X ₀ , order of crystal cost: PWO, BGO, CsI, BSO, BaF ₂ :Y, LYSO								
ltem	Size	1 m ³	10 m ³	100 m ³	Scaled to X ₀			
BGO	22.3×22.3×280 mm	\$8/cc	\$7/cc	\$6/cc	1.23			
BaF ₂ :Y	31.0×31.0×507.5 cm	\$12/cc	\$11/cc	\$10/cc	2.28			
LYSO:Ce	20.7x20.7x285 mm	\$36/cc	\$34/cc	\$32/cc	1.28			
PWO	20x20x223 mm	\$9/cc	\$8/cc	\$7.5/cc	1.00			
BSO	22x22x274 mm	\$8.5/cc	\$7.5/cc	\$7.0/cc	1.29			
Csl	35.7x35.7x465 mm	\$4.6/cc	\$4.3/cc	\$4.0/cc	2.09			

Photo-detectors

□ A large area SiPM, with delta-doping (a super-lattice) for improved speed and QE, and an integrated ALD-applied interference filter
 → Caltech and JPL are working with FBK to incorporate a 220nm filter on a large area SiPM and to also incorporate a superlattice.

FBK SiPM with three-layer filter

Next steps in the program

Optimization of the MBE superlattice layer parameters
 More complex filters will be incorporated (5 layers filter)

3) Backside illuminated SiPM with optimized superlattice

Awaits funding ~ 400k\$

Thoughts on Mu2e-II calo requirements - 1

Requirements

Crystals:

- Hardness to dose
- Moderate light yield for energy and timing resolution

Photosensors:

- Fast
- Good QE
- High radiation hardness

Are these two points compatible?

Short summary from Mu2e experience and Tech choices:

- pure Csl LY 4%(Nal),
- Ham UV-extended SiPMs 30% PDE(@310 nm, 50 μm pixel size)
 - > LY~30 p.e./MeV (10% LY drop at 100 krad)
 - Cooling needs to reduce noise, -10 °C on SiPMs
 - > 10^{12} neutrons/cm² total $\rightarrow \sim 1$ MeV noise level/crystal

Thoughts on Mu2e-II calo requirements - 2

Requirements

Crystals:

- Hardness to dose
- Moderate light yield for energy and timing resolution

Photosensors:

- Fast
- Good QE
- High radiation hardness

Are these two points compatible?

 \Box In Mu2e-2, we expect x10 increase in n-flux up to 10¹³ n/cm² total

→ SiPM 50um pixel @ -30/-40 °C ???

→ We must demonstrate that Ham SiPMs with >15 μm pixel size can work at 10¹³ neutrons/cm²

→ We have to test as well FBK SiPMs (from Mu2e R&D: the FBK SiPMs radiation hardness is lower than Hamamatsu SiPMs)

Short LYso crystal calorimetER - SLYER -

ADVANTAGES

- 8 cm length LYSO are enough to achieved O(5%) energy resolution
- Not problem of ENE and good LRU
- Great timing resolution still after 10¹³ neutrons/cm²
- SiPMs already exist NOT R&D needed
- High LY \rightarrow SiPM @ low over voltage \rightarrow enhanced resistance \rightarrow lower power dissipation
- Not Front-End Amplifier is needed \rightarrow not problems with irradiation level

DISADVANTAGES

 LYSO ~30\$/cc vs ~10\$/cc BaF2 (17\$/cc vs 10\$/cc for equal X0) IS the pile-up rate acceptable with LYSO? We need simulation ...

SLYER proposal: Total cost of the LYSO crystals for the 2 disks = 3.8M\$ (Mu2e: 20 cm Csl + FEE = 1.7M\$ + 0.2M\$) (14 cm BaF2 + FEE = 2.2M\$ + 0.2M\$)

• Emission time of 40 ns of LYSO vs <1 ns of BaF2

SiPMs radiation hardness

V. [V]	$I(V_{1}+4V)$ [mA]	I(V _b +6V) [mA]	I(V _b +8V) [mA]
75 20 ± 0.01	12.56 ± 0.01	20.45 ± 0.01	46 76 ± 0.01
75.29 ± 0.01	14 S0 ± 0.01	30.45 ± 0.01 22.12 ± 0.01	46.77 ± 0.01
76.27 ± 0.01	17.38 ± 0.01	32.12 ± 0.01 33.93 ± 0.01	47.47 ± 0.01
	10		
	$10 \mu \text{m}$		
37 [37]	T/37 1 437) [A]	1/37 : 037) [A]	7/37 (037) [
	V_{br} [V] 75.29 ± 0.01 75.81 ± 0.01 76.27 ± 0.01	V_{br} [V] I(V_{br} +4V) [mA] 75.29 ± 0.01 12.56 ± 0.01 75.81 ± 0.01 14.89 ± 0.01 76.27 ± 0.01 17.38 ± 0.01 10 μ m	$\frac{\mathbf{V_{br}} \left[\mathbf{V}\right]}{75.29 \pm 0.01} \frac{\mathbf{I} \left(\mathbf{V_{br}} + 4\mathbf{V}\right) \left[\mathbf{mA}\right]}{12.56 \pm 0.01} \frac{\mathbf{I} \left(\mathbf{V_{br}} + 6\mathbf{V}\right) \left[\mathbf{mA}\right]}{30.45 \pm 0.01} \frac{30.45 \pm 0.01}{32.12 \pm 0.01} \frac{32.12 \pm 0.01}{33.93 \pm 0.01} \frac{32.12 \pm 0.01}{33.93 \pm 0.01} \frac{10 \ \mu m}{10 \ \mu m}$

	.06.[.]	e(. Di. i) framel	e(. bt : e .) [enerel	a(, bt ; a ,) ferred
-10 ± 1	76.76 ± 0.01	1.84 ± 0.01	6.82 ± 0.01	29.91 ± 0.01
-5 ± 1	77.23 ± 0.01	2.53 ± 0.01	9.66 ± 0.01	37.51 ± 0.01
0 ± 1	77.49 ± 0.01	2.99 ± 0.01	11.59 ± 0.01	38.48 ± 0.01

Neutrons irradiation: 14 MeV neutrons with a total fluence of 10^{14} n/cm² for 80 hours on a series of two SiPMs (10 and 15 μ m)

At 10¹³ n_{1MeV}/cm²:

10 μm pixel size OK, with Mu2e calorimeter cooling system

- 15 μ m pixel size OK, probably with the Mu2e calorimeter cooling system \rightarrow specific tests should be done

First tests of LYSO crystals with SiPM readout

LYSO Crystals:

- Dimensions: 3x3x8 cm³
- Wrapped with ESR (Enhanced Specular Reflector)
- No optical grease applied
- Mu2e-II SIPMs:
 - Configuration: Two new Mu2e SIPMs
 - Each SIPM comprises 16 SiPMs (3x3 mm²) with a 10 µm pixel size
 - Equivalent to 4 SiPMs (6x6 mm²) per channel
 - Area SiPM/Cry → 16% per SiPM
- Readout and Acquisition:
 - Individual readout of each SiPM
 - Acquired with Flash ADC CAEN V1742 at 2.5 Gs/s
- Future Studies:
 - Hamamatsu now offers 6x6 mm² SiPMs with a 10 µm pixel size
 - Future studies will utilize these new SiPMs directly

CR and Test Beam @ BTF

scale factor=0.0117 MeV/pC

Npe/MeV ~ 300 p.e.

Mean Cosmic Ray charge deposition in LYSO readout channels

 TB carried out at LNF BTF using e⁻ beam with multiplicity 1

E = 100, 80, 60 MeV

· Beam impacted on the module's center

Timing Resolution

- Waveform Summation:
 - Difficulty in summing waveforms corresponding to each SiPM
- Upcoming Test:
 - Next test will be conducted directly in the Mu2e-like configuration
 - Configuration: Parallel of two series per channel

Time resolution for Mu2e2 LYSO

Summary

Even if the requirement about the energy [σ_E/E of O(10 %)] and time [$\sigma(t) < 500 \text{ ps}$] resolution remain the same, a big part of the detector and all the electronics **can't survive** to the new radiation environment

- To run Mu2e-II a new technological solution (crystal + photosensor) for the calorimeter is needed
 - TID of about 600 krad and 1-MeV-eq n fluence of $5x10^{12}$
 - Signals with an approximative length of 75 ns
- Solar Blind SIPMs R&D should be concluded and tested the performances
- After neutron irradiation
- with BaF2:Y in a dedicated test beam

LYSO + 10 um pixels SiPMs is a reasonable possibility \rightarrow but dedicated simulations are needed

SPARES

14 November 2024

BaF2 Neutron Irradiation

For the first session of neutron irradiation, only four samples $(1x1x1 \text{ cm}^3)$ produced by SICCAS were selected: one pure BaF₂ crystal and three samples doped with yttrium in the proportion of 1 at.%Y, 3at.%Y and 5at.%Y

- All four samples were placed together about 5 m from the water moderator
- During the 14-day reactor cycle about 2.3×10¹⁴ n/cm² (E>1MeV) passed through the samples
 - All samples were measured before and after irradiation
 - Light outputs were measured using ²²Na source
 - Signals were digitized by CAEN NDT5751
 - The total signal from the BaF_2 samples was measured for 2 µs, the fast component during the first 20 ns, and the slow component after 20 ns

Light yield loss after irradiation

What we are doing for Muon Collider

Crilin: Fast and Rad. Hard. Semi-homogeneous calorimeter

https://iopscience.iop.org/article/10.1088/1748-0221/17/09/P09033 https://iopscience.iop.org/article/10.1088/1748-0221/17/05/T05015

What can be used/proposed also to Mu2e-II?

- Photosensors
- Electronics

Crucial point is the radiation hardness. We tested SiPM of 10 and 15 um

Crilin Picture/CAD ???

SiPMs Characterisation done: neutrons-1

Neutrons irradiation: 14 MeV neutrons with a total fluence of 10^{14} n/cm² for 80 hours on a series of two SiPMs (10 and 15 μ m)

SiPMs Characterisation done: neutrons -2

Extrapolated from I-V curves at 3 different temperatures:

- Currents at different operational voltages.
- Breakdown voltages;

For the expected radiation level, **the best SiPMs choice is the 10** μ **m one** for its minor dark current contribution.

SiPMs Characterisation done: neutrons-3

15 μm

Temperature [°C]	$V_{\rm br}$ [V]	$I(V_{br}+4V)$ [mA]	$I(V_{br}+6V)$ [mA]	$I(V_{br}+8V)$ [mA]
-10 ± 1	75.29 ± 0.01	12.56 ± 0.01	30.45 ± 0.01	46.76 ± 0.01
-5 ± 1	75.81 ± 0.01	14.89 ± 0.01	32.12 ± 0.01	46.77 ± 0.01
0 ± 1	76.27 ± 0.01	17.38 ± 0.01	33.93 ± 0.01	47.47 ± 0.01

10 μm

Temperature [°C]	$V_{\rm br}$ [V]	$I(V_{br}+4V)$ [mA]	$I(V_{br}+6V)$ [mA]	$I(V_{br}+8V)$ [mA]
-10 ± 1	76.76 ± 0.01	1.84 ± 0.01	6.82 ± 0.01	29.91 ± 0.01
-5 ± 1	77.23 ± 0.01	2.53 ± 0.01	9.66 ± 0.01	37.51 ± 0.01
0 ± 1	77.49 ± 0.01	2.99 ± 0.01	11.59 ± 0.01	38.48 ± 0.01

At $10^{13} n_{1MeV}/cm^2$:

- 10 μ m pixel size OK, with current Mu2e calorimeter cooling system
- 15 μm pixel size probably OK with the current Mu2e calorimeter cooling system → few specific tests should be still carried out

Electronics - developments

SiPMs are connected via 50-ohm micro-coaxial transmission lines to a microprocessor-controlled Mezzanine Board which provides signal amplification and shaping, along with all slow control

 ch → 2 micro-coax cables

Huge advantages here: reduceTID requirement to FEE – easier cabling

Energy response for electron beam

80

400

20

40

60

20.63 / 22

0.3048 ± 0.0248 12.97 ± 0.18 83.86 ± 0.29

1.91e+04 ± 2.09e+02

160

180 200 E_{dep} [MeV]

Ν

100 120 140

0.5436

Future Prototype: Simulation

- 25 Crystals with dimension 34x34x80 mm³
- 300 p.e./MeV as measured
- 100 keV ENE with threshold apply @ 3σ
- 100 MeV e⁻ at 45 degrees

4.6% @ 100 MeV

Short LYSO crystal calorimetER - SLYER -

• The Mu2e-II calo alternative design we propose is a compromise between the current Mu2e calo and Crilin.

• What we can re-use of the Mu2e calo:

- 1) The Calibration Source
- 2) The Laser System
- 3) The Cooling distribution and cooling station
- 4) All the support Mechanics
- 5) The digitizers??

• What we need to procure and do:

1) pure CsI 34x34x200 mm³ \rightarrow LYSO 34x34x80 mm³

- 2) 50 um SiPMs \rightarrow 10 um SiPMs
- 3) FEEs + cabling \rightarrow only 2 cables per SiPM

SLYER - Advantages

- 8 cm length LYSO crystals are enough to achieve O(5%) energy resolution
- Not problem of Equivalent Noise Level nor probably RIN
- Reasonably small LRU
- Great timing resolution still after 10¹³ neutrons/cm²
- SiPMs already exist other **R&D not needed**
- High LY → SiPM @ low over voltage → enhanced resistance → lower power dissipation
- Not Front End Amplifier needed \rightarrow no problems with TID

SLYER – Disadvantages

• Buy expensive crystals

budgetary estimate:

- LYSO ~30\$/cc vs ~10\$/cc BaF2
- (17\$/cc vs 10\$/cc for equivalent X0, X0-Lyso (1cm), X0-BaF2 (2cm)

• Total cost of SLYER full proposal

- Slyer LYSO crystals for 2 disks = 3.8M\$
- Mu2e: (20 cm CsI + FEE = 1.7M\$ + 0.2M\$)
- Mu2e-2-baseline: (14 cm BaF2 + FEE = 2.2M\$ + 0.2M\$)
- Relaxed price for SiPMs:
 - 600 k\$, no R&D needs
 - wrt 500 k\$ R&D for SolarBlind SiPMs
- **SLYER reduced proposal:** 1 disk only, specific radial regions
- Emission time of 40 ns of LYSO w.r.t. 0.9 ns of BaF2