

Results on the X17 search with the MEG-II apparatus

Hicham Benmansour, INFN Pisa on behalf of the MEG-II collaboration

WIFAI 2024 Bologna, November 14th, 2024

Outline

- 1) Physics motivation: the Atomki anomalies
- 2) The MEG-II apparatus
- 3) Backgrounds and signal simulations
- 4) Pair reconstruction
- 5) Trigger and DAQ strategies
- 6) Physics dataset and X17 results

1) The Atomki anomalies

Beryllium decays

a) Hadronic dissociation BR ~ 100%

b) Electromagnetic transition γ -emission BR $\sim 1e-5$

c) Electromagnetic transition Direct e^+e^- emission BR ~ 1e-8

-> IPC = Internal Pair Conversion ${}^{7}{\rm Li}(p,e^{+}e^{-})^{8}{\rm Be}$

The Beryllium Anomaly

2016 Atomki results

⁷Li(p,e⁺e⁻)⁸Be

a): E_= 1.20 MeV

IPCC (relative unit)

10

 $^{7}\text{Li}(p, e^{+}e^{-})^{8}\text{Be}$ studied at $E_p = 800, 1040, 1100, 1200 \text{ keV}$

e+/e- energy sum and angular opening Θ

> PC = Internal Pair Conversion direct e+/e- pair creation -> rare process: 1 every 1000 γ

- Internal Pair Conversion (IPC) distribution shows excess at **Θ~**140° at 1100 keV
- 1 possible explanation: decay of a light particle emitted during proton capture
- $m_X = 16.70 \, \text{MeV/c}^2$ best fit $BR(X) = 6 \times 10^{-6}$ wrt to γ production

Phys. Rev. D 95, 035017

vector boson X17?

Phys. Rev. Lett. 116, 042501

 Θ (deg.)

(relative unit)

14-11-2024 WIFAI 2024 The X17 search with MEG-II H. Benmansour

 Θ (deg.)

90 100 110 120 130 140 150

mediator of a fifth force?

Consistent anomalies?

Phys. Rev. C 104, 044003

arXiv:1910.10459

Signal region

Study repeated with Tritium target

• Excess in IPC background at 115° angular opening: > 6σ

⊕ (degrees)

- Possible explanation: a 16.84 MeV neutral boson (X17?)
- Recent excess in $^{11}B(p,\gamma)^{12}C$ as well Phys. Rev. C 106, L061601
- Other indirect searches (NA64, NA48/2): no evidence for X17 but strong constraints
 Phys. Rev. D, 101:071101
 Phys. Lett. B 746, 178

New boson or standard physics?

New boson?

or

Standard Model physics?

• Reported results are kinematically consistent

• Zhang & Miller 2017

Phys. Lett. B 773, 159
Multipole interferences?
Form factor?

• <u>Aleksejevs 2021</u> arxiv:2102.01127 IPC second-order processes included

• <u>Hayes 2021</u> Phys. Rev. C 105, 055502

Underlines importance of E1/M1 multipole contribution ratio

MEG-II objectives

- Hint for the production of a neutral, 17 MeV boson, potential mediator of a fifth force: X17
- Can the measurement be reproduced with an independent setup?
- Need for experimental confirmation: MEG-II has all elements to carry out the measurement
 - Improved resolution
 - Reconstruction in full solid angle
 - Reproduction of excess?
- Engineering run in <u>2022</u>
- First DAQ period in February 2023

2) The MEG-II apparatus

The MEG-II experiment

The MEG-II experiment

- MEG-II experiment searches for charged lepton flavour violating decay: $\mu^+ \to e^+ \gamma$
- At Paul Scherrer Institute, PSI, Switzerland Eur. Phys. J. C, 76(8):434

2) The MEG-II apparatus

Adapting for the X17 search

- We need to measure the <u>direction</u> and <u>momentum</u> of both <u>electron</u> and <u>positron</u>
- MEG-II highly performing spectrometer can be used for the X17 search:
- MEG-II CW accelerator as proton beam reduced magnetic field
 - X17-dedicated target in place of the muon target optimized TDAQ
- gamma auxiliary detectors

The MEG-II experiment

- MEG-II experiment searches for charged lepton flavour violating decay: $\mu^+ \to e^+ \gamma$
- At Paul Scherrer Institute, PSI, Switzerland Eur. Phys. J. C, 76(8):434

The Cockcroft-Walton accelerator

LXe calibration

- → MEG-II Cockcroft-Walton accelerator: used for calibration of LXe calorimeter
- Proton beam impinging on Li target (0.44 MeV resonance): 17.64 MeV γ line

• X17 search

Max proton current and energy: 100 µA and 1.1 MeV

ideal for X17 search, 1.03 MeV resonance

The new target region

- 400 µm-thick carbon fiber vacuum chamber to minimize multiple scattering
- Main target for physics run
- \rightarrow 2 µm LiPON^(*) on 25 µm copper substrate (by PSI)
- For gamma detectors calibration
- → 5 µm LiF on 10 µm copper substrate (by INFN Legnaro)

• Target-supporting and heat-dissipating copper structure

attached to CW nose

Li target

at COBRA center 45° slant angle

Target arm

Cu for heat dissipation

Carbon fiber vacuum chamber

Thickness: 400 µm, Diameter: 98 mm

Length: 226 mm

Mechanical and heat dissipation simulations carried out

B field x0.15 wrt MEG (0.2T at center)

(*) Lithium phosphorus oxynitride (Li_{3-x}PO_{4-y}N_{x+y})

Detectors

SPIN & PARITY

(other states not shown)

• Main gamma detector for bkg understanding

3) Physics backgrounds and signal simulations

Multipole contributions

17

• Cross-section multipole contributions is largely dependent on proton energy

- Need for an accurate background model, IPC is dominant background in signal region
- First IPC model developed by Rose in 1949 Phys. Rev. 76, 678
- Anisotropy and multipole interferences not included
- **Zhang and Miller** in 2017 did it, ZM model

External Pair Conversion and other bkgs

- We simulated External Pair Conversion —> gamma conversion in matter
- EPC rate was estimated to be comparable to IPC
 - But angular opening is largely concentrated below 70°, far from the signal region

- Almost 2 orders of magnitude below IPC in signal region
- All photon conversion events included in full simulation

Signal simulation

- We want to carry X17 search in both 0.44 and 1.02 MeV resonances
- X17 is assumed isotropically produced

• Atomki has carried out the search only in plane orthogonal to beam

- X17 reconstructed <u>not only</u> in orthogonal plane
- 1% efficiency in planes between 40° and 140°

4) Pair reconstruction

Event display

• MEG-II only reconstructs e+. Procedure was adapted for e- as well.

Track selection

23

Fake tracks → short → consecutive hits distance large → if longer, little dense → orthogonal to the beam and close to z=0

Advanced track selection was developed

- With full selection, IPC simulated monotonous shape is recovered
- Remaining fakes in signal region estimated to be negligible

5) Trigger and DAQ strategies

Trigger strategy: CDCH hit multiplicity

• CDCH hit multiplicity is higher for:

CDCH online multiplicity to reconstruct single tracks/IPC pairs/signal pairs

-> symmetric pairs

tracks produced at target center

Reco momentum vs CDCH online multiplicity

Trigger set as 18 hits > 60 mV

- -> Background rate divided by 5 (wrt. 10 hits)
- → 10% signal lost
- Proton current can be largely increased

6) Physics dataset and X17 results

2023 run

27

- In February 2023, first run at $\underline{\text{Ebeam}} = 1080 \text{ keV}$ @Ibeam = 10 μA
- X17 runs: sample of 25k runs of 3k events each
 - 75M triggered events 300k pairs to be reconstructed

Gamma rate in BGO per current unit [Hz/µA]

On full Esum and Angular Opening range:

Unfortunately, we have had contamination from H2+ within proton beam

Angular Opening spectrum

Small dataset @500keV (only 17.6 MeV line) compared to main dataset @1080keV

Data well modelled by Zhang-Miller IPC model!

18.1 MeV presence at 1080 keV leads to E1-enriched flatter shape at large angles 17.6 MeV line / 18.1 MeV line —> 80% / 20% of our main dataset

Analysis strategy

29

- <u>2D likelihood maximization</u>: Esum vs Angular Opening
- Blinded signal region defined as:

Signal Region

- 16 MeV < Esum < 20 MeV
- 115° < Angle < 160°
- Before unblinding, understanding of background done in two sidebands

Maximum likelihood fit

Binned max. likelihood fit using template histograms as PDF from a detailed MC simulation
 validated in the sidebands

• Likelihood parametrized wrt. photon emission BR

$$R_Q = \frac{\mathscr{B}(^8\text{Be}^*(Q) \to ^8\text{Be} + \text{X17})}{\mathscr{B}(^8\text{Be}^*(Q) \to ^8\text{Be} + \gamma)}$$

Two signal templates

 \rightarrow One per resonance, Q = 17.6 and Q=18.1 MeV

Six IPC templates

Three Ep bins,

Two transitions (g.s and 1st excited s.) for each bin

Two EPC templates

- Neglected Ep dependence,
- Transition to g.s. and 1st e.s.

One fake pairs template

Beeston-Barlow likelihood to account for MC limited statistics

Eur. Phys. J. C 82(11), 1043

Best fit

Best fit

- Goodness-of-fit: p-value = 10%
- \rightarrow 10 signal events at Q = 18.1 MeV, O(100) were expected based on Atomki
- 0 signal event at Q = 17.6 MeV, O(300) were expected based on Atomki/Feng et al
- Compatibility test carried out, results in next slides

90% Confidence Limits

32

Systematic effects (energy scale, mass dependence, relative acceptance) included

as nuisance parameters

$$R_Q = \frac{\mathscr{B}(^8\text{Be}^*(Q) \to ^8\text{Be} + \text{X17})}{\mathscr{B}(^8\text{Be}^*(Q) \to ^8\text{Be} + \gamma)}$$

 $R_{17.6} < 1.8 \times 10^{-6}$

 $R_{18.1} < 1.2 \times 10^{-5}$

Compatibility tests

Two hypotheses were tested

Assumes:

- $m = 16.97(22) \text{ MeV/c}^2$
- $R_{18.1} = 6(1)e-6$
- $R_{17.6} = 0.46 R_{18.1}$

Atomki hypothesis: X17 only from 18.1 MeV decay

incompatible at 94% (1.5σ)

Feng et al. hypothesis: X17 from both 18.1 MeV and 17.6 MeV decay

incompatible at 98% (2.1 σ)

Conclusion and outlook

- Anomalous excess observed in the angular correlation of ${}^{7}\text{Li}(p, e^{+}e^{-}){}^{8}\text{Be}$ by the Atomki collaboration
- The MEG-II collaboration has designed, tested and built all the elements to perform the X17 search in an independent manner
 - better understanding of the X17 anomaly
- Physics run in February 2023
- backgrounds, signal and detectors simulation
- 2023 data was reprocessed, good background understanding
- No significant signal was found in our data
- ATOMKI observation was tested and excluded at 94%

- New DAQ period @1030 keV with pure proton beam is foreseen
 - improved sensitivity

Thank you for your attention!

The X17 search with MEG-II

Hicham Benmansour, INFN Pisa on behalf of the MEG-II collaboration

hicham.benmansour@pi.infn.it

Backup slides

Charged Lepton Flavour Violation

- Lepton flavour violation observed experimentally with neutral leptons
 - Neutrino oscillations (Kamiokande, SNOLAB)

- No Charged Lepton Flavour Violation (CLFV) observed so far
- Neutrinoless muon decay is a CLFV golden channel $\longrightarrow \mu^+ \to e^+ \gamma$

SM with massive neutrinos

$$\mathcal{B}(\mu^+ \to e^+ \gamma) \approx 10^{-54}$$

BSM physics

$$\mathcal{B}(\mu^+ o e^+ \gamma) \gg 10^{-54}$$
 accessible experimentally today

• Observation of CLFV at current sensitivities = unambiguous evidence for New Physics

<u>Signal</u>

Back-to-back decay at rest

$$e^{+} \qquad \mu^{+} \qquad t_{e\gamma} = 180^{\circ}$$

$$t_{e\gamma} = 0 \text{ s}$$

$$E_{\nu} = E_{e} = 52.8 \text{ MeV}$$

Backgrounds

Detectors calibrations

• Search relies on an extensive and regular calibration routine

2022 engineering run

• With all elements mentioned above, engineering run in February 2022

- Take-aways from 2022 run
- converting gammas from <u>6 MeV Fluorine line overcrowd the trigger</u> when the LiF target is used —> only good for calibration of ancillary detectors, LiPON has to be used for X17 search
- CDCH multiplicity condition (18 hits on each detector end) strongly suppresses trigger contamination and improves reconstruction
- target region can stand high proton currents(up to 10uA) without overheating —> heat-dissipation material can be reduced (less EPC background)

Gamma detectors

• Two additional gamma detectors

Stability monitoring Signal normalisation Daily monitoring

Bismuth Germanate (BGO) crystal matrix (4x4)

Lanthanum Bromide (LaBr3) crystal

CDCH + pTC

BGO

x

LaBr3

Gamma rate in BGO per current unit [Hz/µA]

Reduced magnetic field and beam tuning

- $\mu \longrightarrow e \gamma$ search relies on 52.8 MeV positron search with default magnetic field (1.27T at COBRA center)
- CW tuned using a quartz target: proton-induced fluorescence in the quartz, visible emission
- Tuning made varying 3 dipolar fields along the beamline to center the beam beam spot centered and covering the Li area

megCam - COBRA OFF

CCD camera - COBRA ON

Cockroft-Walton beam

- Beam composition investigation and tuning
- CW beam tuned using a quartz target: proton-induced fluorescence in the quartz, visible emission
- Tuning made varying 4 dipolar fields along the beamline
- H₂+ contamination in the beam

Measurement of the beam ion composition with Faraday Cup

Faraday cup

lon composition

Collimator to reject H₂+

Spectrometer center

Target studies: SEM and EDX

- Why LiPON?
- Stable, no F-related bkg, thin films through sputtering, developed for batteries
- Difficulties for production: thickness control and non-uniformity, oxidation layer

Delamination, pores, large thickness variations

LiCO₃ on the surface

Excited transitions

• Gamma spectrum using LXe calorimeter to understand excited transitions

- Need for an accurate background model, IPC is dominant background in signal region
- First IPC model developed by Rose in 1949 Phys. Rev. 76, 678
- Anisotropy and multipole interferences not included
- Zhang and Miller in 2017 did it, ZM model
 Phys. Lett. B 773, 159

- We implemented Zhang-Miller model
- Rose/simplified ZM models <u>agree</u> for both E1 and M1 multipoles

External Pair Conversion and other bkgs

- Other backgrounds can impact the search
 - Need to be carefully studied and estimate probabilities
 - Complete setup with target, surrounding region, all detectors and all material was simulated

Large photon (18 and 15 MeV lines) simulation at beamspot position

- Dominating background is <u>EPC</u> and <u>Compton</u> in heat-dissipating Cu ring
- With magnetic field and cylindrical design, reduced low-energy background

Electron reconstruction

• MEG-II only reconstructs e+. Procedure was adapted for e- as well.

- Simulated e+/e- tracks in CDCH
- Both tracks can be distinguished through dp_T/dp_Z sign in COBRA gradient field
- Electron tracks reconstructed with MEG-II's track finder inverting the COBRA field sign assumption

Reconstructed vertices from electron-only simulation

- → 99% of tracks have correct sign
- 1% of tracks is <u>misreconstructed</u>

Electron reconstruction

• MEG-II only reconstructs e+. Procedure was adapted for e- as well.

- Both tracks can be distinguished through dp_T/dp_Z sign in COBRA gradient field
- Electron tracks reconstructed with -100 MEG-II's track finder inverting the COBRA field sign assumption

Reconstructed vertices from electron-only simulation

- → 99% of tracks have correct sign
- 1% of tracks is <u>misreconstructed</u>

Tracks emitted orthogonal to the beam are sign-ambiguous

Vertexing

due to O(20cm) of air between target and CDCH and large multiple scattering tracks are reconstructed O(cm) away from the true vertex

Objective: find e+ and e- common vertex

How: use e+ and e- state extrapolated at beam axis point of closest approach POCA +

beam spot information

Why: improve resolutions

Procedure

- all tracks are <u>fitted separately</u> to the z axis POCA
- selection of <u>best e+ and e- track</u>
- search for a possible <u>common vertex</u> within a beam spot constraint
- vertexing tool
- RAVE (Reconstruction (of vertices) in Abstract Versatile Environments)
- -> compatible with GENFIT

Angular Opening resolutions

→ <u>25% improvement</u> on X17 signal angular opening resolution

Reduced magnetic field

- $\mu^+ \to e^+ \gamma$ search relies on 52.8 MeV positron search with default magnetic field (1.27T at COBRA center)
- for X17: energies ~6 times lower scaling of the field by a factor 0.15 wrt. default
- Signal and backgrounds simulation with different field strengths to estimate the best signal efficiency and resolution

Field scaling	Comments
0.17	good resolution but poor efficiency (low mom outside acceptance)
0.16	good resolution + good efficiency
0.15	good resolution + good efficiency + lower E _{sum} tail for study in sidebands

51

Reduced magnetic field

- $\mu^+ \to e^+ \gamma$ search relies on 52.8 MeV positron search with default magnetic field (1.27T at COBRA center)
- for X17: energies ~6 times lower scaling of the field by a factor 0.15 wrt. default
- Signal and backgrounds simulation with different field strengths to estimate the best signal efficiency and resolution

Field scaling	Comments
0.17	good resolution but poor efficiency (low mom outside acceptance)
0.16	good resolution + good efficiency
0.15	good resolution + good efficiency + lower E _{sum} tail for study in sidebands

Trigger strategy

• S/B (X17 to IPC ratio) in signal region is fixed by physics

• To maximize significance

Reduce <u>non-signal-like</u> <u>contamination</u> in trigger

Increase proton current up to trigger capabilities

EPC
Single tracks
Asymmetric pairs

Pair of tracks
Opening angle > 120°
~Symmetric momenta

HOW TO TRIGGER ON SIGNAL-LIKE?

- In practice, difficult because of <u>no online access to CDCH hit coordinates</u>
- No CDCH trigger for MEG: one to be developed for X17 search

- Alternative: let's use <u>online</u> <u>CDCH waveform amplitude</u>
 - High online threshold to trigger on good hits mostly
 - How to exploit them?

Trigger strategy: TC hit multiplicity

Why requesting at least 1 TC hit?

- -> largely improves <u>track reconstruction</u> efficiency
- 👈 less pileup, allows higher beam rate 🥻

One trigger option:

- 1 TC hit US & 1 TC hit DS
- Selects <u>large angular opening</u> pair
- → IPC rate divided by a <u>factor 60</u> (wrt to 1 TC hit)
- Total trigger rate < 1 Hz (at Iproton = $10\mu\text{A}$)
- X17 rate divided by a <u>factor 3</u> (wrt to 1 TC hit)
- Low angle statistics is mitigated
- Proton current limitations prevented us from making it advantageous

Reconstructed IPC angular opening

To be considered in the future but for now 1 TC hit required

MC production

55

• To account for H₂+ contamination:

Two IPC templates based on interacting proton energy

simultaneous search for X17 in both <u>440 keV</u> and <u>1030 keV</u> resonances based on different IPC shapes

Angle sideband fit

Angle sideband fit

- large angles can be fitted with a mix of flatter IPC and EPC bkg
- further statistics will give more insight but **good understanding of various contributions**
- background is smooth and monotonously falling in signal region

2D template fit

- We can use template histograms, directly from the MC production:
 - no need for PDFs definition
 - naturally <u>accounts for linear and non-linear correlations</u> between the fitted variables
 - <u>easy implementation of Feldman-Cousins</u> approach to confidence belts

- EPC and IPC MC production are particularly time consuming.
- The effect of <u>limited MC statistics</u> can be accounted for in the likelihood (Beeston-Barlow likelihood)
- 2D template fit <u>Esum vs Angle</u> maximizing such likelihood is under investigation
- Additional constraints on ratio of proportions between IPC18,i and IPC15,i
 based on literature
- First tests on both 2023 sidebands

Sideband fit

59

• 2D fit in slices of Esum:

AMELIFIANI

Normalized Counts

A few hours of data were taken as well: spectra are shown here

- As expected, **clear shift of a few hundred keV. To be confirmed with final fit.**BGO PMTs gain drift considered small.
- As expected, increased proportion of « 15 MeV line »

What's next?

61

- H₂+ contamination was mitigated
- New thin 1.9 µm LiPON target installed
- Anisotropy measurements changing BGO position
- Ep scan with BGO @7 different proton energies

- Measurement fully in line with expected H+ cross-section
- 18.1 MeV line was observed: ready for next DAQ!