

<u>Chiara Basile^[*] on behalf of the CMS and ATLAS Collaborations</u>

* La Sapienza Università di Roma, INFN Roma, CERN

Search for lepton flavor violation at ATLAS and CMS

WIFAI 2024 - 14th November 2024

Lepton Flavor (accidental) Symmetry

- Standard Model (SM) has 3 families of leptons electron, muon and tau = lepton flavor (LF)
- SM + massless left-handed neutrinos → *LF* quantum numbers **conserved**
 - interaction vertex between different flavors are forbidden
 - accidental symmetry not protected by any conservation law

- Experimentally proved neutrinos are massive \rightarrow they have mixing angles
 - neutrino oscillations prove LF is not a fundamental symmetry
- Charged Lepton Flavor Violation (cLFV) in charged lepton interactions is not yet observed
 - in SM frame strongly suppressed by power of (M_{ν}/M_{W})
 - potential to probe physics scale much higher than TeV

- Allowed in SM via neutrino oscillations
 - $Br(\tau \rightarrow 3\mu) \sim 10^{-55}$ = experimentally invisible
- Perfect playground to test presence of New Physics
 - some SM extensions predict $Br(\tau \rightarrow 3\mu) \sim o(10^{-9} 10^{-8}) =$ within ATLAS and CMS sensitivity
- **ATLAS** results [EPJC(2016)] based only on 20.3 fb⁻¹ \rightarrow focus on full-Run2 CMS results

cLFV in $\tau \rightarrow 3\mu$ decay Introduction

Phys. Lett. B 853 (2024) 138633

efficiency

statistic

At LHC τ leptons abundantly produced mainly via:

- **D** and **B** mesons decays (~10¹¹ τ s per fb⁻¹)
 - low-pT and forward muons in the detector
- $W \rightarrow \tau \nu$ boson decays (~10⁷ τ s per fb⁻¹)
 - isolated au topology and large missing transverse energy

- Bump hunt in the reconstructed 3μ invariant mass around nominal $m(\tau)$ over a soothly falling background
 - measure/set UL on $Br(\tau \rightarrow 3\mu)$

cLFV in $\tau \rightarrow 3\mu$ decay

Analysis strategy

Phys. Lett. B 853 (2024) 138633

- $\tau \rightarrow 3\mu$ candidates from muon tracks matching trigger object
 - common vertex fit to 3μ tracks \rightarrow displaced SV
 - veto events compatible with di-muon hadronic resonances $\eta, \omega(783), \rho(770) \dots Z$
 - W ch. : combine with MET of the event
- Data-driven background modeling from 3μ mass sidebands
- Event categorization based on per-event 3μ mass resolution
- Signal candidate selection with **BDT**
- Control channel $D_s \to \phi(\mu\mu)\pi$ with misID π as muon
 - control channel to validate BDT inputs and score and signal modeling
 - normalization channel in HF ch.

cLFV in $\tau \rightarrow 3\mu$ decay Results

- **POI** signal strength scaling $Br(\tau \rightarrow 3\mu)$
- Simultaneous unbinned maximum likelihood fit to $M(3\mu)$ in all the analysis categories
 - sensitivity dominated by statistics
- Current best limit by Belle II $Br(\tau \rightarrow 3\mu) < 1.9 \times 10^{-8}$ JHEPO9(2024)062

Chiara Basile - LFV at CMS and ATLAS - WIFAI 24, Bologna

CMS sensitivity competitive to results obtained at B-factories

Full Run2 combination obs. (exp.) UL at 90% CL $Br(\tau \to 3\mu) < 2.9 (2.4) \times 10^{-8}$

2018, 59.8 fb⁻¹ (13 TeV) W Category A Data Signal (B=10⁻⁷) Background-only fit *m*(3µ) [GeV]

Wch obs. (exp.) UL at 90% CL $Br(\tau \to 3\mu) < 8.0 (5.6) \times 10^{-8}$

cLFV in top quark production & decay

- CMS and ATLAS searches targeting $t\mu\tau q_{\mu}$ vertices
- **CMS** targets also $t\mu eq_{\mu}$ vertices in trilepton final state
 - details in <u>backup</u>

Search for $t\tau\mu q$ vertices ATLAS & CMS Introduction

- SM extensions entail cLFV in top quark production and decay
 - leptoquark model predict $Br(t \rightarrow ll'c) \simeq 10^{-6}$
- Model independent approach SMEFT with 6-dim operator
 - pp-collision energy scale << new physics scale (Λ)
 - $t\ell\ell'q$ vertices with 6-dim EFT operator
- Target cLFV processes:
 - (ST) single top **production** via $gq_u \rightarrow t\mu\tau$
 - (TT) top decay in $t\bar{t}$ via $t \rightarrow \mu \tau q_u$
- MC separately for ST and TT and 6-dim operators tensor structure
 - scalar, vector or tensor Lorentz structure ($C/\Lambda^2 = 1TeV^{-2}$)
- Signature: opposite sign $\mu + \tau_h + 1$ b-jet

Search for $t\tau\mu q$ vertices at CMS analysis strategy

- SR signature $\mu + \tau_h + \geq 1$ b-jet & W fully hadronic
- Background mainly from *t*t SM in lepton+jet and di-leptonic final state
 - smaller contribution from single top tW mainly and fake τ_h
- Signal selection: 3 classes DNN signal ST, signal TT and background
 - single training combining
 - EFT operator Lorentz structure
 - interaction vertices $t\mu\tau u$ and $t\mu\tau c$
- Binned maximum likelihood fit to DNN score separately w.r.t. Lorentz structure

Chiara Basile - LFV at CMS and ATLAS - WIFAI 24, Bologna

Events / bin

Search for $t\tau\mu q$ vertices at ATLAS ATLAS analysis strategy

- SR signature $2\mu + \tau_h + \geq 1$ jet & exactly 1 b-jet ${}_{g}$
 - targeting $W \rightarrow \mu\nu$ decay
 - same sign muons \rightarrow reject $Z \rightarrow \mu^{\pm} \mu^{\mp}$ background
- Background enriched CRs
 - $CR\tau$: opposite sign muons \rightarrow enriched with fake τ_h (jet misID)
 - $CRt\bar{t}\mu$: mainly $t\bar{t}$ + non prompt(NP) μ
- Simultaneous profile likelihood fit to H_T in SR and $CRt\bar{t}\mu$ with 2 POIs
 - μ_{cLFV} : signal strength in EFT frame
 - $k(NP\mu)$: normalization of $NP\mu$ contribution

Search for $t\tau\mu q$ vertices Results

• Probing EFT operator Lorentz structure separately \rightarrow limits set Wilson coefficients ($c_{tu\tau u} \& c_{tu\tau c}$) and

 $Br(t \rightarrow \mu \tau q)$ branching ratios

- assuming linear relation between $Br(t \rightarrow \mu \tau u)$ and $Br(t \rightarrow \mu \tau c)$
- σ_{cLFV} dominated by ST $gu \rightarrow tll'$ process and tensor operators
 - strongest limits on $t\mu\tau u$ than $t\mu\tau c$ and coupling to tensor operators

Chiara Basile - LFV at CMS and ATLAS - WIFAI 24, Bologna

12

cLFV in Higgs sector

- Search for Higgs decays in $e\mu$, $e\tau$ and $\mu\tau$ final states
 - target measuring LFV off diagonal Yukawa couplings $Y_{\ell^{\alpha}\ell^{\beta}}$
- LFV arise in BSM models predicting
 - more than one Higgs doublet
 - SUSY models
 - composite Higgs model

General overview

- Loose constraint $Br(H \to l\tau)_{LFV}$ < 10% from $\tau \to e\gamma$ and $\tau \to \mu\gamma$ searches
 - direct searches are much more powerful
- Final states considered $e\tau_h$, $e\tau_\mu$, $\mu\tau_h$ and $\mu\tau_e$
 - different flavor leptons in final state $\ell \tau_{\ell} \rightarrow$ remove Z/ γ^* bkg
- Constraints set assuming contribution to Γ_H from
 - only one LFV vertex (CMS & ATLAS)
 - both $He\tau$ and $H\mu\tau$ (ATLAS)
- Higgs production mainly from ggF and VBF
- Background from $\mathbb{Z}\ell\ell$ with misID leptons and $t\bar{t}$ in di-leptons final states

Search for $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$ at ATLAS

Analysis strategy

JHEP07(2023)166

- Signature oppositely charged $e + \tau$ or $\mu + \tau$
 - veto b-jet \rightarrow suppress $t\bar{t}$ bkg
- Each channel $\ell \tau$ events split in VBF and non-VBF categories
- Multiple subsequent BDTs targeting different background
 - improve signal sensitivity
 - combination of the scores in a 1D variable
- Separate maximum likelihood fit targeting
 - independent search : $Br(H \to \ell \tau)$ combining $H\ell \tau_{\ell'}$ and $H\ell \tau_h$ setting $Br(H \to \ell' \tau) = 0$
 - simultaneous $H\mu\tau$ and $He\tau$ signal strength measurement

Search for $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$ at CMS

Analysis strategy

Phys.Rev.D (2021) 104, 032013

- Signature: opposite charged $e + \tau$ or $\mu + \tau$
 - isolated leptons and ≤ 2 jets no b-tagged jet

- Each channel $\ell \tau$ events split in 8 categories
 - 2 cat upon τ decay mode $\ell \tau_h$ and $\ell \tau_{\ell'}$
 - each one split in 4 : 0-jets, 1-jet, 2-jets ggH and 2-jets VBF
- Signal selection via BDT separately trained in $\ell \tau_h$ and $\ell \tau_{\ell'}$
 - collinear mass m_{COI} as m_H proxy from visible energy
- Maximum likelihood fit to BDT in each channel separately

Yukawa couplings for $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$ Results

- Independent searches upper limits @ 95% CL
 - ATLAS $Br(H \rightarrow \mu \tau) < 0.18\%$ and $Br(H \rightarrow e \tau) < 0.20\%$
 - CMS $Br(H \rightarrow \mu \tau) < 0.15\%$ and $Br(H \rightarrow e \tau) < 0.22\%$
- Off diagonal Yukawa couplings
- direct $H \rightarrow \ell \tau$ searches \rightarrow more stringent constraints than $\tau \to 3\ell$ and $\tau \to \ell\gamma$ searches CMS **τ→3**μ <u>ר</u>^{זב} 10^{−1} $\tau \rightarrow \mu \gamma$ 10^{-2} 10^{-3} $|Y_{\ell\tau}|^2 + |Y_{\tau\ell}|^2 = \frac{8\pi}{m_H} \frac{\mathcal{B}(H \to \ell\tau)}{1 - \mathcal{B}(H \to \ell\tau)} \Gamma_H(SM),$ 10^{-4} 10⁻⁵ ′ 10^{-5}

Chiara Basile - LFV at CMS and ATLAS - WIFAI 24, Bologna

μτ

JHEP07(2023)166

Search for $H \rightarrow e\mu$

Overview

- LFV in SM and BSM Higgs decay
- LFV can arise in additional Higgs bosons decays \rightarrow Type-III 2 Higgs Doublet Model (2HDM)
 - strong constraint from searches of H' in below $2m_W$
- Signature $e^{\pm}\mu^{\mp}$ mass within 100 and 160 GeV

•	Categorization upon	s / 1.25 Ge\ ^m	00 - - 80	
	 ggH and VBF Higgs production 	Events	50	
	 BDT score sensitivity 	4	40	
•	Fit to $M(e\mu)$ spectrum simultaneously	2	20 -	
	in all categories targeting			ł
	• $Br(H \rightarrow e\mu)$ and $Y_{e\mu}$ for 125 GeV Higgs)ata/Bkg	1	
	• $\sigma_{BSM}(pp \to X \to e\mu)$		ہلے 100	

Search for $H \rightarrow e\mu$ Results

- No significant excess for SM Higgs
 - CMS obs. (exp.) UL $Br(H \rightarrow e\mu) < 4.4(4.7) \times 10^{-5}$ @ 95% CL
 - ATLAS $Br(H \rightarrow e\mu) < 6.2(5.9) \times 10^{-5}$ @ 95% CL PhysLetterB(2019)135143
- Excess of global (local) 2.8 σ (3.8 σ) for M_X ~ 146 GeV
 - not sufficient to claim any observations

Chiara Basile - LFV at CMS and ATLAS - WIFAI 24, Bologna

Phys.Rev.D.(2023)108.072004

- SM extension predicting LFV interactions at TeV energy scale
 - SM+ U(1) gauge symmetry \rightarrow Z' boson
 - scalar ν in R-aprity violating SUSY
 - quantum black holes (QBH) in low-scale gravity
- Clear experimental signature: 2 prompt opposite sign different flavor (OSDF) leptons

LFV in heavy resonance BSM LFV Z' benchmark model HEP10(2023)082

- Benchmark model : Z' boson with SM quark coupling and chiral structure + LFV couplings
- Signature from prompt **OSDF** leptons $e\mu$, $e\tau$ and $\mu\tau$
 - bump search in $M(\ell \ell')$ in TeV range

- Irreducible background from SM $t\bar{t}$, tW, $Z\tau\tau$ and VVdecays producing **OSDF** leptons in final state
- Simultaneous fit to SR and CRs in $M(\ell \ell')$ separately for the different flavors
 - less than 2σ tension with SM in $\ell\tau$ channels at 2.0 and 2.3 TeV

LFV in heavy resonance BSM Results

- **CMS** and **ATLAS** have the same sensitivity in all channels
 - more stringent constraint on Z' mass from $e\mu$ final state

Conclusions

- An overview of the latest cLFV searches conducted by ATLAS and CMS
- cLFV searches are an ideal playground to look for new physics • possibility to probe physics scales much larger than the TeV \rightarrow **SMEFT** frame observation of SM suppressed decays → evidence of new particles/interaction vertices !
- CMS and ATLAS are able to exclude rare decays branching ratios up to 10^{-8} • there is still room to accommodate BSM theories predictions!
- Sensitivity for rare process will benefit form the new data coming from ongoing Run3 CMS and ATLAS already collected almost 184 /fb !
 - > 120 /fb only during 2024!
- Sensitivity increase from new strategies for trigger design and reconstruction algorithms
 - targeting higher acceptance and efficiency
 - in particular for low-pT rare decays signatures such as $\tau \rightarrow 3\mu$

cLFV in top quark sector with 3 lepton final state Overview

- Experimental signature :3 lepton in the final state
 - $\mu^{\pm}e^{\mp}$ from cLFV vertex
 - $1\ell \text{ from SM W} \rightarrow \ell \nu$
 - \geq 1 b-tagged jet
- Target $te\mu q_u$ cLFV vertices both in top production and decay \rightarrow 2 SRs
 - $M(e\mu) > 150 \text{GeV}$ production
 - $M(e\mu) < 150 \text{GeV}$ decay
- 3 events categories:
 - $eee/\mu\mu\mu$: LFC \rightarrow background modeling
 - *eμl* : LFV signal category

cLFV in top quark sector with 3 lepton final state Analysis strategy and results arXiv:2312.03199v1

- SM background sources divided in
 - prompt mainly from $WZ \rightarrow MC$ modeled
 - non-prompt from other process (DY..) \rightarrow data-driven
- MVA with 2 BDTs for the top production and decay SRs
 - training inclusively w.r.t. *teµu* and *teµc* and the EFT Lorentz structure
- Binned likelihood fit to BDT distribution simultaneously to decay and production SRs and separately w.r.t. EFT operator Lorentz structure
- POI : signal strength scaling of $\sigma_{
 m cLFV}$ in SMEFT dim-6 frame
 - with only 1 non-vanishing Lorentz structure coefficient

SMEFT coupling and branching ratio relation

$Br(t \rightarrow \epsilon)$

$$\mathcal{B}(t \to e\mu q) = \begin{cases} \frac{|C_{e\mu tq}^{tensor}|^2}{\Lambda^4} \frac{m_t^5}{64\pi^3 \Gamma_t^{SM}} \\ \frac{|C_{e\mu tq}^{vector}|^2}{\Lambda^4} \frac{m_t^5}{384\pi^3 \Gamma_t^{SM}} \\ \frac{|C_{e\mu tq}^{scalar}|^2}{\Lambda^4} \frac{m_t^5}{3072\pi^3 \Gamma_t^{SM}} \end{cases}$$

Chiara Basile - LFV at CMS and ATLAS - WIFAI 24, Bologna

$$e\mu c) + Br(t \to e\mu u) = \frac{m_t}{f \cdot \pi^3 \Gamma_t^{SM}} \cdot (|C_{te\mu c}|^2 + |C_{te\mu u}|^2)$$

²)

27

Simultaneous $He\tau H\mu\tau$ measurement Results

- 2.4 σ for $Br(H \rightarrow \mu \tau)$ and 1.6 σ for $Br(H \rightarrow e\tau)$ excess w.r.t. SM
 - overall 2.1 σ compatibility with SM

