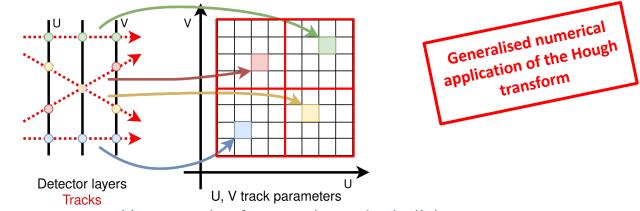

3rd Workshop Italiano sulla Fisica ad Alta Intensità - WIFAI Young Scientist Forum – Nov 13th 2024

Event reconstruction at LHCb

- LHCb is a forward spectrometer tailored for charm and beauty physics studies LHCb plan for U2
- High cross section of interesting events [CERN-LHCC-2014-016]:
 → triggering on simple quantities is not possible
 - \rightarrow event fully reconstructed online by LHCb at the LHC average rate (~30 MHz)
- Heterogeneous solution in Run 3 (2022-2026):
 - \rightarrow heterogeneous trigger: GPU (HLT1) + CPU (HLT2)
- What about HL-LHC?
 - \rightarrow Luminosity up to 1.5 x 10³⁴ cm⁻² s⁻¹ (up to x7.5 w.r.t. Run 3)
 - \rightarrow Increase in luminosity translates in higher computational power
- LHCb established a Coprocessor TestBed:
 - \rightarrow testing new heterogeneous computing solutions with realistic conditions provided



Introducing "primitives"

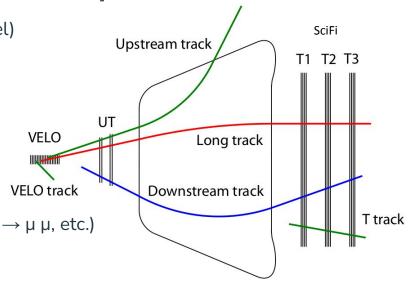
- After detector readout and <u>before</u> event building **primitives** can be created
- Inject primitives (i.e. clusters, track segments) as raw data in the early stages of DAQ
 - Accelerate following stages (off-loading)
 - Possible bandwidth reduction
- Constraints:
 - Located at readout level: required event throughput 30 MHz (LHC bunch crossing rate)
 - \circ Before event building \rightarrow Constrained latency \rightarrow can't rely on time-multiplexing
- FPGAs with their low latency and high throughput are good device candidates for this task
 - The "Artificial Retina" is a highly-parallel architecture conceived for this scenario [G.Punzi Vetex2019]

The "Artificial Retina" architecture

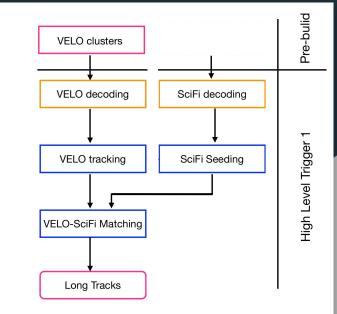
- Track parameter space represented by a matrix of processing units (cells)
- Each cell computes a weighted sum of hits near the reference track
- Reconstructed tracks identified as local maxima in the cells matrix response
 - Interpolating responses of nearby cells for obtaining real tracks parameters

Cells work in a fully parallel way for reaching high-throughput and low-latencies Overcoming FPGA size limitations (without increasing latency) with **cells spread over several chips**

Is Retina advantageous at HL regimes?


• Merging events from Run 3 conditions simulation -> emulating higher luminosities

- Similarly, a bigger system can be emulated increasing the cell density of the demonstrator
- We can maintain the throughput by linearly increasing the system size
- Where and how much Retina can accelerate LHCb event reconstruction?


Tracking at LHCb [CERN-LHCb-PUB-2021-005]

- Velo tracks: hits from VELO (VErtex LOcator pixel)
- T tracks: hits from SciFi (Scintillating Fibres)
- Long tracks: hits on at VELO-(UT)-SciFi
 - \circ The most used in analysis
- Downstream tracks: hits on UT and SciFi
 - Most interesting for studying: VELO track Neutral kaons and lambdas ($D^0 \rightarrow K_S K_S, K_S \rightarrow \mu \mu$, etc.) Lifetime-unbiased $D^0 \rightarrow K_S \pi \pi$ Exotics LLPs
 - Recently implemented in HLT1 [J. Zhuo CHEP 2024]
- Downstream tracks are reconstructed starting from T tracks
- Long tracks can be reconstructed starting from T tracks

The matching sequence

- One of the possible HLT1 reconstruction sequence at LHCb
- VELO and SciFi independently reconstructed
 - T-tracks + VELO tracks -> Long Tracks
- Requires **7.2 µs** per event: **1.5 µs** only for Seeding

The matching sequence

- One of the possible HLT1 reconstruction sequence at LHCb
- VELO and SciFi independently reconstructed then matched
 - T-tracks + VELO tracks -> Long Tracks
- Requires 7.2 µs per event: 1.5 µs only for Seeding

How much can we accelerate it using primitives?

Seeding -> primitive decoding and refitting (test with HLT1 sw)

366.00 kHz


2227.94 kHz

139.52 kHz

200

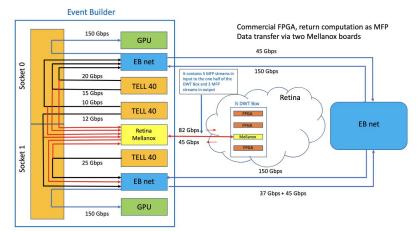
400

- Execution time:
 - ο Total: **5.4 μs**
 - Decoding and refitting: 0.06 μs
 - Negligible overhead
- Saved time >100% replaced algorithm due to memory off-loading

600

Throughput in RTX A5000 (kHz)

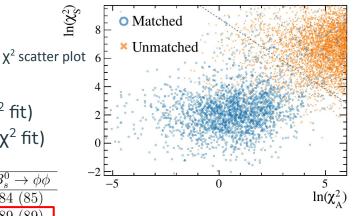
800


2200

8

The Downstream Tracker

- LHCb plans to build a device (DWT) for reconstructing T track primitives using the "artificial retina" architecture for **Run 4** [LHCB-TDR-025]
- System overview
 - ~100 FPGAs boards (new LHCb readout boards)
 - 24 hosts servers (separated cluster from DAQ servers)
 - Infiniband connection to current DAQ
- DWT as a mean for accelerating HLT, **not substituting it**
 - Retina -> combinatorial side of the task
 - HLT can refine the primitives with further ghost removal, clone killing and employ more sophisticated tools (e.g. ML)



Performance of the DWT via simulation

- C++ Retina emulator employed (exact bitwise adherence to FPGA firmware [Terzuoli CDT2023])
- 2-step reconstruction:
 - \circ Axial pattern recognition (Retina) + Ghost removal (χ^2 fit)
 - Stereo pattern recognition (Retina) + Ghost removal (χ^2 fit)

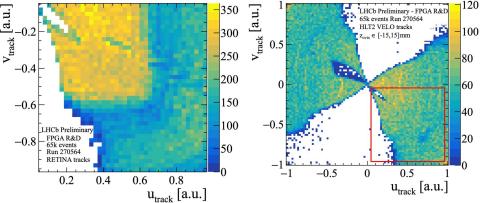
Track type	MinBias	$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-$	$B_s^0 \to \phi \phi$
Long, $p > 3 \text{GeV}/c$	85(86)	83 (84)	84 (85)
Long, $p > 5 \text{GeV}/c$	90(91)	89(90)	89(89)
Long from B not e^{\pm} , $p > 3 \text{GeV}/c$	-	-	88 (87)
Long from B not e^{\pm} , $p > 5 \text{GeV}/c$	-	-	90(90)
Down, $p > 3 \text{GeV}/c$	84 (85)	83(84)	83(84)
Down, $p > 5 \text{GeV}/c$	89(91)	88(89)	88(89)
Down from strange not e^{\pm} , $p > 3 \text{GeV}/c$	-	83 (83)	-
Down from strange not e^{\pm} , $p > 5 \text{GeV}/c$	-	88 (88)	-
Down from strange not long not e^{\pm} , $p > 3 \text{GeV}/c$	-	83 (83)	-
Down from strange not long not e^{\pm} , $p > 5 \text{ GeV}/c$	-	88(89)	-
ghost rate	16(10)	17(12)	17(13)
ghost rate / (1 - ghost rate)	0.2(0.1)	0.2 (0.1)	0.2(0.1)

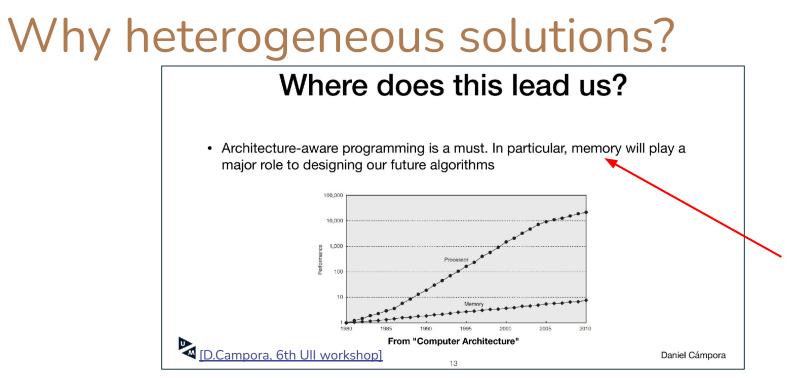
- $\chi^2_A < 60$ ln(χ^2_A) + ln(χ^2_S) < 8.5
- Fiducial requirements: $p_{\rm T} > 200 \text{ MeV/c}; 2 < \eta < 5$

Conclusions

- Heterogeneous computing solution is becoming a must as we move to the high luminosity frontier
 - Pattern recognition tasks will greatly benefit from this
- FPGAs offer as the target device due to high throughput and low latency, also greener solution
- Primitives as intermediate reconstruction step at readout
 - Accelerating the following DAQ chain -> Off-loading -> More complex tasks available
- **Retina** reconstructed primitives will become a reality in LHCb Run 4
 - DWT tracker -> Seeding+Matching sequence can be accelerated by 33% when primitives are included in the main LHCb reconstruction sequence
- Good tracking performance -> fine tuning in evaluation (balancing Retina/HLT1 refinement)
- Plan to build a **vertical slice of the DWT before Run 4** for extensive integration tests
- Gain of knowledge and experience in view of the highly challenging HL-LHCb (Run 5)

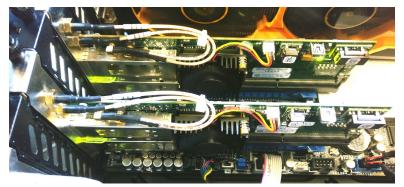
Thanks for your attention!


Backup

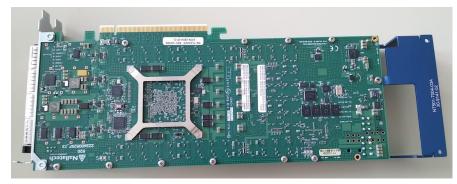

Are we capable of building this?

- Architecture tested during several years of R&D
- HW Demonstrator installed LHCb TestBed facility (Point 8)
 - Receiving data from LHCb DAQ in real time
- Implemented on 8 FPGA Stratix 10
- VELO quadrant reconstruction
- Tested on LHCb Montecarlo data:
 - Nominal luminosity $(2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1})$
 - Longest uninterrupted run: 27 days
 - Event rate: 19.6 MHz
 - \circ Power consumption: 550 W
- Real data: good qualitatively accord
 between Retina and HLT2 reconstructed tracks (no ghost/clone killing in Demonstrator)

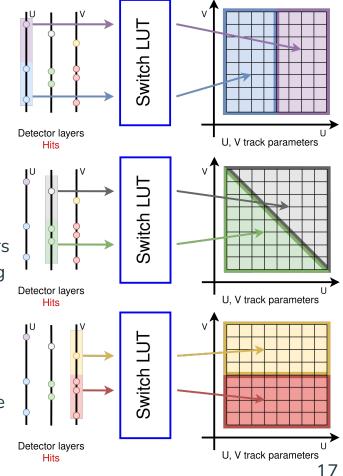
14



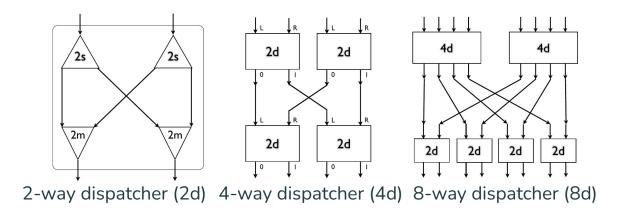
- Tasks that require non-contiguous data (e.g. pattern recognition) need many memory accesses
- More suitable devices can help us with these type of tasks in a more efficient way \rightarrow HLT can dedicate freed resources to more complex trigger selections


Hardware

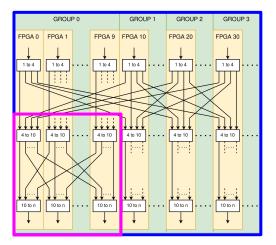
Prototyping board,
 2 Intel Stratix V FPGAs,
 96 optical links


• PCIe 8x board, 1 Intel Arria V GX FPGA, 8 optical links

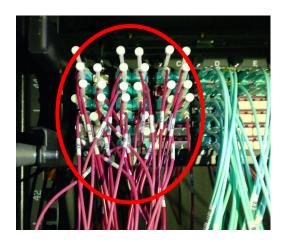
• PCIe 16x board, 1 Intel Stratix 10 FPGA, 16 optical links 16


The Distribution Network

- Hits are provided to different Tracking boards arranged by sub-detector DAQ board.
- A custom distribution network rearranges the hits by track parameters coordinates (similar to a "change of reference system").
- Using Lookup Tables (LUTs), the Distribution Network delivers to each cell only hits close to the parametrized track, enabling large system throughput.
- The Distribution Network is a single entity transversal to all the Tracking boards.
- We designed a modular Distribution Network spread over the same array of FPGAs performing the tracking.

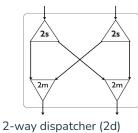

Switch

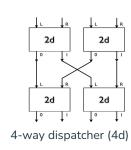

- 2-way dispatcher (2d): 2 splitters (1 input 2 outputs) and 2 mergers (2 inputs 1 output).
- Combining 2-way dispatchers is possible to build a switch with the desired number of lanes:
 - Switch with $N = 2^n$ lanes requires M 2-way dispatchers: $\begin{cases} M(0) = 0 \\ M(n) = 2M(n-1) + 2^{n-1} \end{cases}$ Ο
- We can implement any 2^n lanes switch changing a single parameter.

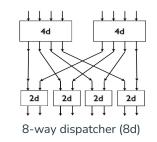


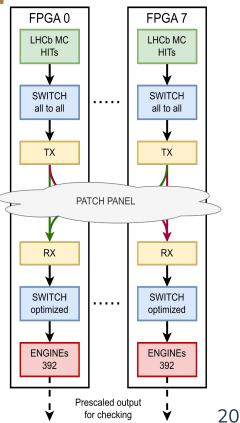
Distribution network

- Portion of the whole VELO distribution network currently implemented
 - 8 nodes full-mesh network
 - 28 full-duplex links at 25.8 Gbps
 - Total bandwidth 1.41 Tbps

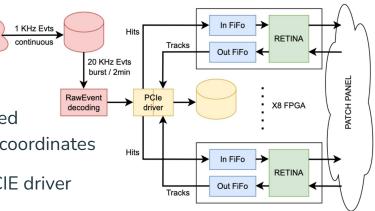







Optimising the hits distribution

- The switch (modular design) handles the hits distribution by routing the hits to the correct implemented TPUs using look-up-tables (LUTs)
- Implemented 64 TPUs over 8 boards (8TPUs/board)
- First optimised: last step of the switch (8x8 dispatcher)
 - One switch/chip: 1TPU/Out_line and 2 VELO modules/Input_line
- The optimisation
 - \circ Pairing the TPUs (2 by 2) with highest number of common hits
 - \circ ~ Iterate over the paired TPUs as we move to higher switch levels
 - Move hits duplication towards last switch layers



Running live on data from collisions

- Testbed facility is fed with data from the Monitoring Farm (1kHz evts) and they are stored on disk
 - Chunks of RawEvents (1.9MB/chunk)
- In addition to hit clustering, alignment need to be applied
 - Conversion of VELO clusters from local to global coordinates
- Need communication with FPGAs using stock board PCIE driver
 - \circ $\,$ Loading VELO hits to the boards
 - \circ $\hfill Reading reconstructed tracks from the boards$
 - Checking FPGAs error registers
- Moreover due to the the demonstrator not being integrated in the LHCb online system
 - Decoding incoming RawEvents from Monitoring Farm
 - Selecting the detector sources (VELO modules compatible with the chosen quadrant)

Monitorina

Farm

