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Overview

® Saryon form factors analyticity

e The /A baryon special case

® Dispersion relations for the form factors’ ratio

® Parametrization and )(2 definition

® Results and discussIonNs



Given a baryon &%, the electromagnetic current is

(P.| 7\, ) | Py) = eittpy

F(0) = Qg

0 4 is the electric charge

Breit frame
(pr—p)' =q" = (0,9)

Sachs (electromagnetic) form factors
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G () = F¥(q?) +MFQ%(QZ)
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Gii(a®) = F*(q*) + F(¢?)
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Yy ri\gq oM.,
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F2(q%)

Saryon - pnoton vertex

F i% (g?) and Fi% (g%)are the
Dirac and Pauli form factors

u(p;)

F(0) = kg

K Is the anomalous magnetic moment

G (0) = Oy

Gif(0) = Qg + kg = g

U 1S the total magnetic moment



Asymptotic benhaviour

The asymptotic form factors behaviour is given in pQCD by
counting rules as q2 — — 00

Helicity conservation Helicity flip
o g x GH(D) o gD x G/ -4
® 2 gluon propagators distributing the 5
momentum transfer of the virtual photon e |2 gluon propagators] / 4 [ —q

o Gi(g® ~ (¢gH)7? o GZ(q*) ~ (g7

Dirac and Pauli Form Factors Sachs Form Factors Ratio
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-rom factors in the time-like region

N the time-like region, GE@ VR ER GA‘? (g?) are complex functions

Crossing symmetry: <P(p’) J’““ P(p)> — <P(p’)P(p) ‘J’"‘ O>

Optical theorem

Im ((P(P/)P(P)‘Jﬂ‘ 0>> ~ Z <P(p’)P(p)‘]ﬂ‘ n> <n ‘jﬂ‘ O> N {Im (Fi%) £0

. for g* > 4M?
Where | n) are intermediate states, i.e. |n) = 2x, 37, ...

Phragmén Lindel6f theorem Asymptotic behaviour in the time-like region

f f(z) = f, as z = oo along the straight line

L, and f(z) = f, as z = oo along the

straight line L,, and f(z) is regular and zlim Gj? (qz) = 2lim GA‘? (42)
bounded in the angle between the lines, then q =+ 9" ==

fi =/, =fi»and f(z) — f;, in the region

between L, and L,



A\ Form Factors

Theoretical threshold -
I[(AA) = 0, and the lightest isoscalar
hadronic state is 717~ 7"

Physical threshold
L owest center of mass energy to produce a A\ couple

I 2
qphys i (ZM/\>
e Unphysical and space-like regions have no e [orm factors have nonzero imaginary
y) y)
data parts for ¢© > g7,
e [he relative phase is measured through the . Glf;\(qz) vanishes for q2 —0

weak decay A = pr~, A = pr*



Dispersion relations

The form factors G£ 1 are analytic functions on the qz—complex olane with the cut (qt%l, oo)
on the real axis.

Dispersion relations are based only on unitarity and analyticity = model independent

approach
Dispersion relation for the imaginary part Dispersion relation for the logarithm
(q? < 0): (q? < 0);
o1 [® Im(G(s)) \/ dh—49° > In |G(s)|
G(g”) =— ds In (G(qz)) = ds
), §S— 612 T 2 2 2
9in i (S —4q )\/S — 4ih
Experimental Inputs Theoretical Inputs
e [ime-like data for form factor's moduli from e Analyticity
ete”™ & BAB

e [hreshold values
e [me-like data for the relative phase from

ete” o B'R e Asymptotic behaviour
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Data for modulus and phase of G/ Giy

Experimental Data: Rmodulus

BESIII 2019
BaBar 2007
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\ 4
1.00 BESIII 2019
15 BaBar 2007
0.75
1.0 + *
0.50
\ 4
0.5
z= 0.25
Q
gu L 4
<)
0.0 5 0.00
5.0 5.5 6.0 6.5 7.0 7.5
q? (GeV?/c*) —-0.25
BaBar collaboration, Study of ete™ — AA, Aio, x050 using initial state radiation with BaBar, Phys. Rev. D 76 (2007) —0.50
092006 [0709.1988]
-0.75

5.0 5.5 6.0 6.5 7.0 7.5

More data coming soon!

M. Ablikim et al. (BESIII Collaboration), Complete Measurement of the A Electromagnetic Form Factors, Phys. Rev. Lett.
123, 122003

Sine of the relative phase accessible
through polarization 2My/? sin20)| GRIGYy | sin (are(GR/GY))

P, ==

No hints on the determination of the g* (1 + cos?(0)) + 4M3 ‘Gfg‘/ G]\//\[‘ sin®(6)
relative phase



Dispersive proceaure

G g” G(0) =0 INOE
We define the ratio R(g?) = lf\(qz) =4 lj\( )2 A,y L )
Gi(q?) G (gphy) = Gp(Gphy) R(gpny) = 1

The asymptotic behaviour

G2(g%)
2 E _
QETOOR(Q = Gii(g?) = o

Subtracted dispersion relations for real and imaginary part

, @ [TImRE)
R(g") = R(0) + . L% G 2) Vg* & |qg, )
Or=0 ,
n o [TIMRE) o
Re(R(q ))—&O{+ nP,[zs(s— ) ds, Vqg- & [qth,oo)

The subtracted dispersion relations ensure the normalization at q2 =0



Parametrization through the set of Chebyshev polynomials { Y}(x) }

Im(R(q?)) = Y(qz; C. qgsy) -1

~ 2

Theoretical constraints on Y(¢?%; C, c]asy)

R(g})is real = Y(g;; C ,qazsy) =
R(g2 )isreal = Y(g% ; C,q2.) =0
thy qphy’ > Qasy

R(g* > gz, isreal = Y(¢* > g C.qz,) =0

N
> CT@), af < ¢* < g2,

Parametrization 1or the torm factors ratio

nY%
j=0

q° — g,

2 _ 42
Qasy — Ytn

— 1

N x(g?) =2
q- 2 Dasy

q* € [g3, q%,) = x(g*) € [- L1]

Theoretical constraints on Re(R(qz))

2 2 ~ 2

q sy Y(53 C, i)

e () = B [T )
P /s S0 —4qf)

sl =1

Qazsy qusy Y (S , C ’ QaZSy)
Pr

— 2

Re (R(g2,)) ‘ >

/2

Experimental constraints for the time-like region (q2 > qshy)

3 experimental points for the modulus and 2 for the phase from Babar (2007

and BESIII (2019).

10



The ¥ definition

2(~ .2 ) 2 2 2 2
X ( C, Qasy> =X | R| + )(45 + Tphy)(phys + Tasy)( asy + TeurvXcurv

2

( )
s [ /XD +re) - &

= 0 ‘Rj‘

X(q°) = Re(R(g*))

J

& ( sin (arctan(¥(gD/X(gD)) - sin()
Z 6 sin(¢hy)

Constraint at g% = g2 ( _X ) The values of ;. and 7, are
K Ty T )(phy (qphy chosen so thatpthye theoreﬂéal
| 5 ) N 2 conditions are exactly fulfilled.
Constraint at g* = gy, )(asy = (1 - X (qasy )
The minimization procedure
a2, sz(s) 2 implies the solution of an ill-
. . I posed problem which has to be
Oscillation damping —— )(CUW = J T2 ds eqularized.

2
4
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[ he parametrization

The theoretical constraints Y’ (qth, qasy) =Y (Clphy C Clasy) =Y (Clasy, C qasy) —

remove three degrees of freedom, allowing to determine three coefficients, i.e. Cy, C, C2.

The asymptotic threshold qfsy IS used as a free parameter.

f we consider (N + 1) Chebyshev polynomials, we are left with (N — 2) free coefficients.

We used N = 5, so we have four free parameters Cs, C,, Cs and qfsy.

® Tyhy = 10* = The real part of the ratio is forced to the unity at g% = qghy.
o T,y =0 = No constraint for the real part at q* = qgsy.
o 7., = 0.05= Dumping relevant only for high degree polynomials.

If 7,0y IS 10O large physical information are canceled.

If 7., 1S 100 small the solution has too much noise.
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Results & AiIScCuUsSsIon

At the thresholds qt%l clgle qgsy the values of the ratio are real, so the relative phases
are integer multiples of of & radians.

N B | arg GI{Z\ (Qt%l,asy)
—
T G143 o))

The )(2 minimization alongside with the theoretical constraints allows to produce the
(N, Nasy) possible pairs compatible with the data points.

A Monte Carlo procedure allows to obtain the probability of occurrence of each pair
(Nth’ Nasy)'

N Ny %
-1 2 50.5%
-1 1 16.0%
0 3 26.8%
-1 0 4%



NModull and relative phases
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Charge radius of a neutral baryon

. 2 N
The charge radius squared <rE> of an In the Breit frame, g = (O,q), the

S . dGL(q*
extended particle is proportional to the <”E>2 =6 £4) electric form factor is the Fourier
first derivative of the electric form factor dg? transform of the spacial charge
2 2 — q2:O ; : .
G (q ) atqg” = 0. distribution.

For a neutral baryon the Sachs form factors are normalized as Gg(0) = 0, Gy,(0) = u # 0, then taking
the derivative of the ratio R(g?) = GE(qz)/ GM(qz)

=0 at ¢2=0
— )
R@P| 1 (dGe(d?)  Gled) dGy(qd) _ 1 dGgg)| 1)
dg> |  Gu(g)\ dg Gu(g®  dg? Gu(g?)  dg? po6
q*=0 g2=0 q*=0
In terms of the dispersion relations for the imaginary part, the first derivative of the ratio
R(g?) at g* = 0'is computed as
dR(a? 6u [ Im (R(s) 61 < ! T(x)dx 2 2
<rE>2:6ﬂ (qz) =_,Lt“ (2 >dS= quzcj[ J . —., quzQCzsy )
dq o T 7, S ﬂAC] =0 1 (X + 1+ qth/Aq ) 2



Charge radius of a neutral baryon

7% = Sign (@g}z)\/

(rr, 3m) -

(0, 3m) -

(-rt, 3m) -

(-rT, 2m) -

(-t, m) -

(-1, 0) -

=N
Fg

()"

The A baryon charge radius is comparable
with the neutron one 7.

_—n
Fg

1.6%

26.8%

0.7%

50.5%

16.0%

4.0%

-0.4

-0.2

0.0

re (fm)

0.2

0.4

The 172 values suggest that the negative charge of the A baryon’s s quark lies further to the

center than the d quark of the neutron.



-Inal consigderations

The bands represent the one-sigma-error computed with statistical analysis of the Monte Carlo
orocedure.

The dispersive procedure, connecting time-like experimental values and theoretical constraints,
allows to assign different determinations to the phase, and hence to the measured values of the
ohase. This gives information about the space-like behaviour of the form factors ratio.

Assuming no zeroes for the magnetic form factor, the Levinson's Theorem allows to count the
number of zeroes of the electric form factor, aside from the theoretical one at q2 =0

A¢ — ¢(OO) — gb(qt%) =T <Nasy I th) 2> T

The most probable value for N,y — Ny, is 3, hence there are at least two additional zeroes for
A¢,,2

GE (q°).

lo do list:

e Update the plots with the new data from BESIII collaboration.

e Unravel the systematic uncertainty given by the degree of the polynomial used for the fit.
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Thank you for
your attention!
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(Cross section

Scattering cross section (q2 < 0)

Real valued

do  a’E.cos*(0/2) /

R R [(G;?)z —7(1+2(1 - 7 tanX(0/2)) (GA‘?)ZI

1 -1

Annihilation cross section (q2 > (2M 93)2) Complex valued

/f?

b 5 o

40~ 16E2

Coulomb correction

V100 |

€C =
ﬁ 1 — e—malp

€ is a final state interaction effect



Analyticity of form factors

Spacelike region Unphysical region Timelike region
> <0 G < 4" < Gy q° > Gy,
eRB — eRB BB — eTe M, ete™ o BR
‘GE@ (99| Gﬁ(é]z)‘
GE(q). Gif(g?) G2, |Giigd) )
arg (GE@/ Gi? )

* Sine of the argument measurable in polarized cross section only



Dispersion relations

e Consider the complex function R(z) with N poles
{pj}j]\iland M zeroes {z;};, and a branch cut

(%0, o)

e Taking the integral over the contour I, gives the
Cauchy’s argument principle

| dIn (R(2)
: ( ) dz=M—-N
r—oco 2I7T r dz

e By taking each contribution into account

1 [ dIn(R©) 1
lim — dz = — (arg(R(c0)) — arg(R(x,)))
r—o0 20T J - dz T

r

(arg(R(c0)) — arg(R(xy)) = 7 (M — N)

L evinson’s Theorem



1 he curvature weignt

The curvature weight 7., regularises the fit function ehaviour.

urv

T T

~urv 1S 100 large physical information are canceled.

If 7.4 1S 100 small the solution has too much noise.

45

T The polynomial degree N and the curvature weight
o / T.qry &€ Mutually dependent.
c. /
¥, /
10 —— 5/ ' ' '
: 1k The value of 7., &t a given polynomial degree is
: ggvenhb?/da ‘phase transition” of the asymptotic
T threshold.
3.5 )///u




