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LHCb ECAL Upgrade II
• Currently: sampling ECAL composed of 

Shashlik modules


• Radiation doses ~ 1 MGy foreseen for Run 5 
and Run 6 (innermost region)


• The high luminosity environment will require:

‣ Time resolution ~ few tens of 

picoseconds 
‣ Radiation hardness 
‣ Energy resolution at the level of the 

current one (10% sampling term, 1% 
constant term)
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Scheme of a currently-used Shashlik module (Irina Machikhiliyan and 
LHCb calorimeter group. https://iopscience.iop.org/article/

10.1088/1742-6596/160/1/012047)

Expected radiation dose for the High Luminosity phase, in Gy (“Framework TDR for 
the LHCb Upgrade II: Opportunities in flavour physics, and beyond, in the HL-LHC era.” 

https://inspirehep.net/literature/2707810)

https://iopscience.iop.org/article/10.1088/1742-6596/160/1/012047
https://iopscience.iop.org/article/10.1088/1742-6596/160/1/012047
https://inspirehep.net/literature/2707810


LHCb ECAL Upgrade II
• Future: Spaghetti Calorimeter (SpaCal) 


• Scintillating fibres inserted into a dense passive absorber

‣ Fibres: polystyrene / garnet crystal

‣ Absorber: lead (Pb) / tungsten (W)
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Picture of a Pb-
polystyrene prototype 
in a test-beam setup

➡  Run 4: 
‣ W-Poly & Pb-Poly

‣ Single-side readout

‣ No timing  X

➡  Run 5 & 6: 
‣ W-Crystal and Pb-Poly

‣ Double-side readout

‣ Timing  ✓

Beam direction

• If single-side readout modules perform well enough:

➡ Use them for Run 5 & 6 in some regions of the ECAL

➡ Reduce costs

➡ Increase granularity
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Z 
300 mm

X 
121.2 mm

Y 
121.2 mm

Module

(absorber + fibers)

PMT

PMT

PMT

Z axis

Electron

3 x 3 PMTs 
array

Mirror Energy depositions (1 GeV)

• Goal: study the time resolution of a simulated 
module


• Incident e- at 1 GeV and 10 GeV

• Module under study: Pb + Polystyrene

• Single-side readout (back)
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PMTs simulations

Single photoelectron pulse:                f(t) = A ⋅ t2 ⋅ e−t/τ A =
R ⋅ gain ⋅ qe

τ3
⋅ 109
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What is the “time stamp” of a signal?

t t t

https://en.wikipedia.org/wiki/Constant_fraction_discriminator

Fixed threshold CFD
• Time stamp computed with the “Constant Fraction 

Discriminator” (CFD) algorithm


• Time stamp = time at which the signal exceeds a 
defined fraction of the pulse’s amplitude


• The “best” fraction must be properly chosen in order 
to optimize the time resolution


• Time resolution = std. dev. of the time stamps sample

https://en.wikipedia.org/wiki/Constant_fraction_discriminator


First results

• As expected, better resolution at higher 
energies (photostatistics contribution)


• Slow PMTs perform better
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    Why? 

➡ Slow PMTs are less affected by the 
longitudinal fluctuations of the 
showers Results with no electronic noise, no amplitude fluctuations of the 

single ph.e. pulses, no light guides/optical coupling



Why are slower PMTs better ?
• Shower depth and time stamp are correlated. For deeper showers:


‣ Direct photons arrive earlier to the PMT   —>   Negative correlation
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• Barycenter of the 
energy depositions 

• Direct photons



Why are slower PMTs better ?
• Shower depth and time stamp are correlated. For deeper showers:


‣ Direct photons arrive earlier to the PMT   —>   Negative correlation

‣ Reflected photons arrive later   —>   Positive correlation


➡  The CFD time stamp is biased by the shower depth 
➡  This bias worsens the time resolution
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• Barycenter of the 
energy depositions 

• Reflected photons 

• Direct photons



Why are slower PMTs better ?
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• This effect is more relevant for fast PMTs (they better distinguish between direct and reflected photons)

• It affects the shape of the PMTs signals   —>   The CFD method can’t take it into account

• It depends on the CFD threshold 

‣ Low thresholds mostly detect direct photons

‣ For some thresholds the two correlations partially cancel out each other, removing the overall bias

Vo
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ge
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)

10 GeV 
Tau = 0.1 ns 

“Fast”

10 GeV 
Tau = 2.0 ns 

“Slow”



Correction procedure
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• Polynomial fit to the profiled scatter plot of time stamp  vs shower 
depth of each event


➡  Find the correction curve    

• Corrected time stamp for the jth event defined as:   


• The best CFD threshold after the bias correction may be different

t

f
̂tj = tj − fj



Results
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• Corrected resolution = std. dev. of the 
unbiased time stamps 


• Faster PMTs (lower ) undergo wider 
corrections 

• The best CFD threshold after the correction is 
always ~ 10% or ~ 90%

‣ At these levels: correlation between time 

stamp and shower depth is maximum

‣ Highest corrections

̂t

τ

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 (ns)τ 

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

 T
im

e 
re

so
lu

tio
n 

(n
s)

Best resolutions vs tau

10 GeV
10 GeV, corrected
1 GeV
1 GeV, corrected

Best resolutions vs tau

Results with no electronic noise, no amplitude fluctuations of the 
single ph.e. pulses, no light guides/optical coupling



Outline

• Introduction: the LHCb ECAL Upgrade II


• Simulation studies of a Pb-Polystyrene module


• Analysis of testbeam data from the CERN SPS 

• Conclusions

15



Setup

- SpaCal W-Polystyrene


- 4 cells only (4.5 x 4.5 cm2)


- Kuraray SCSF-78 (blue) or 3HF (green) fibres


- Readout with 4 different PMTs:

‣ R7600U, R9880U, R14755U, R11187 (a.k.a. 

Tilecal)

“Small module”
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• Testbeam campaign at the CERN SPS in June 2024


• Full characterization of SpaCal and Shashlik 
modules


• For time resolution measurements:  beams (20 
GeV - 100 GeV)

e−
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Time resolution results - Small module
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•SCSF-78 results are systematically better due to faster decay time of the fibres

•SCSF-78 fibres: slow PMTs (R7600U and Tilecal) perform better  —>  Less biased by shower depth

•3HF fibres: best results for PMTs with Extended Red Multi Alkali (ERMA) photocathode


σT(E) =
sampl .

E
⊕ const .
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Correction to the time stamp

Ti
m

e 
st

am
p 

(n
s)

Rise time (ns)

Example with small module

R14755U


E = 100 GeV• Polynomial fit to the profiled scatter plot of time stamp  vs rise 
time of each signal  —>  Find the correction curve   


• Corrected time stamp for the jth event defined as:   


• The corrected time resolution is the standard deviation of  

t
f

̂tj = tj − fj

̂t

Simulations show that the rise time is highly correlated to the 
shower depth


➡  Idea: exploit the rise time to remove the bias
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Corrected resolution - Small module with SCSF-78 fibres
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Corrected resolution - Small module with 3HF fibres
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Corrected resolution - Small module
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• As expected, fast PMTs (R9880U and R14755U) undergo wider corrections

• Still not enough for the fast PMTs to do better than R7600U

• The best threshold is always ~ 10% or 90%
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σT(E) =
sampl .

E
⊕ const .
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Conclusions
• The time resolution is worsened by the longitudinal fluctuations of the showers affecting the pulses’ shape


➡ The CFD algorithm can’t take this into account 

• A procedure aiming at removing the shower depth bias has been developed and applied to testbeam data, 
exploiting the signals’ rise time


• Resolutions below 20 ps obtained at high energies with testbeam data

➡  Good timing capabilities of the SpaCal even in single-side readout mode
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Is there a better way to define the time stamps?



Thank you for your attention



Backup slides
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To get an idea:
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Hamamatsu R7600U-00-M4 
FWHM ~ 2.1 ns


Tau ~ 0.6 ns

Hamamatsu R14755U-100 
FWHM ~ 0.68 ns


Tau ~ 0.2 ns
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Simulation of the photons
Each optical photon has:


• Deposition time = time stamp of the single energy 
deposition which triggers the scintillation


• Generation time = time required by the scintillation 
process to generate the photon


• Propagation time = time to reach the PMT window
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(where the incident electron is created at t = 0)

ttotal = tdeposition + tgeneration + tpropagation
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Simulation of the photons
Each optical photon has:


• Deposition time = time stamp of the single energy 
deposition which triggers the scintillation


• Generation time = time required by the scintillation 
process to generate the photon


• Propagation time = time to reach the PMT window

(where the incident electron is created at t = 0)
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Tau = 0.1 ns 
(FWHM = 0.35 ns)



31

Tau = 2.0 ns 
(FWHM = 7 ns)



Some results (10 GeV)
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• Slow PMTs give a better resolution 
• This effect is caused by the double peak of the propagation time 
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Time resolution model
• The time resolution as a function of the number of photons impinging the PMTs is well 

described by


• Assuming linearity:      (energy of the incident )Nph ∝ E e−
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σT(E) =
a′￼

E
⊕

b′￼

E
⊕ c′￼

σT(Nph) =
a

Nph
⊕

b

Nph

⊕ c
• Noise term

• Sampling term

• Constant term



Time resolution model
• Noise term: caused by the electronic noise fluctuations


• Faster PMTs (quicker rise time) lead to smaller noise terms


• When exploiting the CFD algorithm, it can be estimated as


• If it is subtracted in quadrature, the resolution as a function of the energy becomes

34

σTnoise
=

2
3

σn

dA/dt

σT(E) =
b′￼

E
⊕ c′￼

•  = std. dev. of the 
electronic noise


•  = pulse’s amplitude

σn

A

Ref: Eric Delagnes, June 2016, “What is the theoretical 
time precision achievable using a dCFD algorithm?”

https://www.researchgate.net/publication/304127806_What_is_the_theoretical_time_precision_achievable_using_a_dCFD_algorithm
https://www.researchgate.net/publication/304127806_What_is_the_theoretical_time_precision_achievable_using_a_dCFD_algorithm
https://www.researchgate.net/publication/304127806_What_is_the_theoretical_time_precision_achievable_using_a_dCFD_algorithm

